We consider a family of birational maps $ \varphi_k $ in dimension 4, arising in the context of cluster algebras from a mutation-periodic quiver of period 2. We approach the dynamics of the family $ \varphi_k $ using Poisson geometry tools, namely the properties of the restrictions of the maps $ \varphi_k $ and their fourth iterate $ \varphi^{(4)}_k $ to the symplectic leaves of an appropriate Poisson manifold $ (\mathbb{R}^4_+, P) $. These restricted maps are shown to belong to a group of symplectic birational maps of the plane which is isomorphic to the semidirect product $ SL(2, \mathbb{Z})\ltimes\mathbb{R}^2 $. The study of these restricted maps leads to the conclusion that there are three different types of dynamical behaviour for $ \varphi_k $ characterized by the parameter values $ k = 1 $, $ k = 2 $ and $ k\geq 3 $.
Citation: |
[1] |
J. Blanc, Symplectic birational transformations of the plane, Osaka J. Math., 50 (2013), 573-590.
![]() ![]() |
[2] |
I. Cruz and M. E. Sousa-Dias, Reduction of cluster iteration maps, Journal of Geometric Mechanics, 6 (2014), 297-318.
doi: 10.3934/jgm.2014.6.297.![]() ![]() ![]() |
[3] |
I. Cruz, H. Mena-Matos and M. E. Sousa-Dias, Dynamics of the birational maps arising from $F_0$ and $dP_3$ quivers, Journal of Mathematical Analysis and Applications, 431 (2015), 903-918.
doi: 10.1016/j.jmaa.2015.06.017.![]() ![]() ![]() |
[4] |
I. Cruz, H. Mena-Matos and M. E. Sousa-Dias, Dynamics and periodicity in a family of cluster maps, preprint, arXiv: 1511.07291.
![]() |
[5] |
I. Cruz, H. Mena-Matos and M. E. Sousa-Dias, Multiple reductions, foliations and the dynamics of cluster maps, Regular and Chaotic Dynamics, 23 (2018), 102-119.
doi: 10.1134/S1560354718010082.![]() ![]() ![]() |
[6] |
S. Fomin and A. Zelevinsky, Cluster algebras. I. Foundations, J. Amer. Math. Soc., 15 (2002), 497-529.
doi: 10.1090/S0894-0347-01-00385-X.![]() ![]() ![]() |
[7] |
A. P. Fordy and A. Hone, Discrete integrable systems and Poisson algebras from cluster maps, Commun. Math. Phys., 325 (2014), 527-584.
doi: 10.1007/s00220-013-1867-y.![]() ![]() ![]() |
[8] |
A. P. Fordy and A. Hone, Symplectic maps from cluster algebras, Symmetry, Integrability and Geometry: Methods and Applications, 7, (2011), 12 pp.
doi: 10.3842/SIGMA.2011.091.![]() ![]() ![]() |
[9] |
A. P. Fordy and R. J. Marsh, Cluster mutation-periodic quivers and associated Laurent sequences, J. Algebraic Combin., 34 (2011), 19-66.
doi: 10.1007/s10801-010-0262-4.![]() ![]() ![]() |
[10] |
M. Gekhtman, M. Shapiro and A. Vainshtein, Cluster Algebras and Poisson Geometry, Mathematical Surveys and Monographs, 167. American Mathematical Society, Providence, RI, 2010.
doi: 10.1090/surv/167.![]() ![]() ![]() |
[11] |
R. J. Marsh, Lecture Notes on Cluster Algebras, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2013.
![]() ![]() |
Quiver associated to the family of maps