doi: 10.3934/jgm.2020010

The group of symplectic birational maps of the plane and the dynamics of a family of 4D maps

1. 

Departamento de Matemática, Faculdade de Ciências da Universidade do Porto, R. Campo Alegre, 687, 4169-007 Porto, Portugal

2. 

Center for Mathematical Analysis, Geometry and Dynamical Systems (CAMGSD), Departamento de Matemática, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

* Corresponding author

Received  July 2019 Published  March 2020

Fund Project: The work of the first and second authors is partially funded by FCT (Portugal) under the project PEst-C/MAT/UI0144/2013. The third author is partially funded by FCT (Portugal) under the projects UID/MAT/04459/2013 and PTDC/MAT-PUR/29447/2017

We consider a family of birational maps $ \varphi_k $ in dimension 4, arising in the context of cluster algebras from a mutation-periodic quiver of period 2. We approach the dynamics of the family $ \varphi_k $ using Poisson geometry tools, namely the properties of the restrictions of the maps $ \varphi_k $ and their fourth iterate $ \varphi^{(4)}_k $ to the symplectic leaves of an appropriate Poisson manifold $ (\mathbb{R}^4_+, P) $. These restricted maps are shown to belong to a group of symplectic birational maps of the plane which is isomorphic to the semidirect product $ SL(2, \mathbb{Z})\ltimes\mathbb{R}^2 $. The study of these restricted maps leads to the conclusion that there are three different types of dynamical behaviour for $ \varphi_k $ characterized by the parameter values $ k = 1 $, $ k = 2 $ and $ k\geq 3 $.

Citation: Inês Cruz, Helena Mena-Matos, Esmeralda Sousa-Dias. The group of symplectic birational maps of the plane and the dynamics of a family of 4D maps. Journal of Geometric Mechanics, doi: 10.3934/jgm.2020010
References:
[1]

J. Blanc, Symplectic birational transformations of the plane, Osaka J. Math., 50 (2013), 573-590.   Google Scholar

[2]

I. Cruz and M. E. Sousa-Dias, Reduction of cluster iteration maps, Journal of Geometric Mechanics, 6 (2014), 297-318.  doi: 10.3934/jgm.2014.6.297.  Google Scholar

[3]

I. CruzH. Mena-Matos and M. E. Sousa-Dias, Dynamics of the birational maps arising from $F_0$ and $dP_3$ quivers, Journal of Mathematical Analysis and Applications, 431 (2015), 903-918.  doi: 10.1016/j.jmaa.2015.06.017.  Google Scholar

[4]

I. Cruz, H. Mena-Matos and M. E. Sousa-Dias, Dynamics and periodicity in a family of cluster maps, preprint, arXiv: 1511.07291. Google Scholar

[5]

I. CruzH. Mena-Matos and M. E. Sousa-Dias, Multiple reductions, foliations and the dynamics of cluster maps, Regular and Chaotic Dynamics, 23 (2018), 102-119.  doi: 10.1134/S1560354718010082.  Google Scholar

[6]

S. Fomin and A. Zelevinsky, Cluster algebras. I. Foundations, J. Amer. Math. Soc., 15 (2002), 497-529.  doi: 10.1090/S0894-0347-01-00385-X.  Google Scholar

[7]

A. P. Fordy and A. Hone, Discrete integrable systems and Poisson algebras from cluster maps, Commun. Math. Phys., 325 (2014), 527-584.  doi: 10.1007/s00220-013-1867-y.  Google Scholar

[8]

A. P. Fordy and A. Hone, Symplectic maps from cluster algebras, Symmetry, Integrability and Geometry: Methods and Applications, 7, (2011), 12 pp. doi: 10.3842/SIGMA.2011.091.  Google Scholar

[9]

A. P. Fordy and R. J. Marsh, Cluster mutation-periodic quivers and associated Laurent sequences, J. Algebraic Combin., 34 (2011), 19-66.  doi: 10.1007/s10801-010-0262-4.  Google Scholar

[10]

M. Gekhtman, M. Shapiro and A. Vainshtein, Cluster Algebras and Poisson Geometry, Mathematical Surveys and Monographs, 167. American Mathematical Society, Providence, RI, 2010. doi: 10.1090/surv/167.  Google Scholar

[11]

R. J. Marsh, Lecture Notes on Cluster Algebras, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2013.  Google Scholar

show all references

References:
[1]

J. Blanc, Symplectic birational transformations of the plane, Osaka J. Math., 50 (2013), 573-590.   Google Scholar

[2]

I. Cruz and M. E. Sousa-Dias, Reduction of cluster iteration maps, Journal of Geometric Mechanics, 6 (2014), 297-318.  doi: 10.3934/jgm.2014.6.297.  Google Scholar

[3]

I. CruzH. Mena-Matos and M. E. Sousa-Dias, Dynamics of the birational maps arising from $F_0$ and $dP_3$ quivers, Journal of Mathematical Analysis and Applications, 431 (2015), 903-918.  doi: 10.1016/j.jmaa.2015.06.017.  Google Scholar

[4]

I. Cruz, H. Mena-Matos and M. E. Sousa-Dias, Dynamics and periodicity in a family of cluster maps, preprint, arXiv: 1511.07291. Google Scholar

[5]

I. CruzH. Mena-Matos and M. E. Sousa-Dias, Multiple reductions, foliations and the dynamics of cluster maps, Regular and Chaotic Dynamics, 23 (2018), 102-119.  doi: 10.1134/S1560354718010082.  Google Scholar

[6]

S. Fomin and A. Zelevinsky, Cluster algebras. I. Foundations, J. Amer. Math. Soc., 15 (2002), 497-529.  doi: 10.1090/S0894-0347-01-00385-X.  Google Scholar

[7]

A. P. Fordy and A. Hone, Discrete integrable systems and Poisson algebras from cluster maps, Commun. Math. Phys., 325 (2014), 527-584.  doi: 10.1007/s00220-013-1867-y.  Google Scholar

[8]

A. P. Fordy and A. Hone, Symplectic maps from cluster algebras, Symmetry, Integrability and Geometry: Methods and Applications, 7, (2011), 12 pp. doi: 10.3842/SIGMA.2011.091.  Google Scholar

[9]

A. P. Fordy and R. J. Marsh, Cluster mutation-periodic quivers and associated Laurent sequences, J. Algebraic Combin., 34 (2011), 19-66.  doi: 10.1007/s10801-010-0262-4.  Google Scholar

[10]

M. Gekhtman, M. Shapiro and A. Vainshtein, Cluster Algebras and Poisson Geometry, Mathematical Surveys and Monographs, 167. American Mathematical Society, Providence, RI, 2010. doi: 10.1090/surv/167.  Google Scholar

[11]

R. J. Marsh, Lecture Notes on Cluster Algebras, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2013.  Google Scholar

Figure 1.  Quiver associated to the family of maps $ \varphi_k $. The label on the arrows indicates the number of arrows between the nodes
[1]

Rafael de la Llave, Jason D. Mireles James. Parameterization of invariant manifolds by reducibility for volume preserving and symplectic maps. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4321-4360. doi: 10.3934/dcds.2012.32.4321

[2]

Eric Bedford, Kyounghee Kim. Degree growth of matrix inversion: Birational maps of symmetric, cyclic matrices. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 977-1013. doi: 10.3934/dcds.2008.21.977

[3]

Michael Entov, Leonid Polterovich, Daniel Rosen. Poisson brackets, quasi-states and symplectic integrators. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1455-1468. doi: 10.3934/dcds.2010.28.1455

[4]

Wenxiong Chen, Congming Li. Harmonic maps on complete manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 799-804. doi: 10.3934/dcds.1999.5.799

[5]

Martin Pinsonnault. Maximal compact tori in the Hamiltonian group of 4-dimensional symplectic manifolds. Journal of Modern Dynamics, 2008, 2 (3) : 431-455. doi: 10.3934/jmd.2008.2.431

[6]

George Papadopoulos, Holger R. Dullin. Semi-global symplectic invariants of the Euler top. Journal of Geometric Mechanics, 2013, 5 (2) : 215-232. doi: 10.3934/jgm.2013.5.215

[7]

Wei Feng, Xin Lu. Global periodicity in a class of reaction-diffusion systems with time delays. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 69-78. doi: 10.3934/dcdsb.2003.3.69

[8]

Carles Simó, Dmitry Treschev. Stability islands in the vicinity of separatrices of near-integrable symplectic maps. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 681-698. doi: 10.3934/dcdsb.2008.10.681

[9]

Chi-Kwong Fok. Picard group of isotropic realizations of twisted Poisson manifolds. Journal of Geometric Mechanics, 2016, 8 (2) : 179-197. doi: 10.3934/jgm.2016003

[10]

Manuel de León, David Martín de Diego, Miguel Vaquero. A Hamilton-Jacobi theory on Poisson manifolds. Journal of Geometric Mechanics, 2014, 6 (1) : 121-140. doi: 10.3934/jgm.2014.6.121

[11]

Sze-Bi Hsu, Ming-Chia Li, Weishi Liu, Mikhail Malkin. Heteroclinic foliation, global oscillations for the Nicholson-Bailey model and delay of stability loss. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1465-1492. doi: 10.3934/dcds.2003.9.1465

[12]

Eugen Mihailescu, Mariusz Urbański. Holomorphic maps for which the unstable manifolds depend on prehistories. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 443-450. doi: 10.3934/dcds.2003.9.443

[13]

Pierre-Damien Thizy. Schrödinger-Poisson systems in $4$-dimensional closed manifolds. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2257-2284. doi: 10.3934/dcds.2016.36.2257

[14]

Begoña Alarcón, Sofia B. S. D. Castro, Isabel S. Labouriau. Global dynamics for symmetric planar maps. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2241-2251. doi: 10.3934/dcds.2013.33.2241

[15]

Blanca Climent-Ezquerra, Francisco Guillén-González. Global in time solution and time-periodicity for a smectic-A liquid crystal model. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1473-1493. doi: 10.3934/cpaa.2010.9.1473

[16]

Toshikazu Kuniya, Mimmo Iannelli. $R_0$ and the global behavior of an age-structured SIS epidemic model with periodicity and vertical transmission. Mathematical Biosciences & Engineering, 2014, 11 (4) : 929-945. doi: 10.3934/mbe.2014.11.929

[17]

Daniel N. Dore, Andrew D. Hanlon. Area preserving maps on $\boldsymbol{S^2}$: A lower bound on the $\boldsymbol{C^0}$-norm using symplectic spectral invariants. Electronic Research Announcements, 2013, 20: 97-102. doi: 10.3934/era.2013.20.97

[18]

M. Jotz. The leaf space of a multiplicative foliation. Journal of Geometric Mechanics, 2012, 4 (3) : 313-332. doi: 10.3934/jgm.2012.4.313

[19]

I. Baldomá, Àlex Haro. One dimensional invariant manifolds of Gevrey type in real-analytic maps. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 295-322. doi: 10.3934/dcdsb.2008.10.295

[20]

Eugen Mihailescu. Unstable manifolds and Hölder structures associated with noninvertible maps. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 419-446. doi: 10.3934/dcds.2006.14.419

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (39)
  • HTML views (225)
  • Cited by (0)

[Back to Top]