
-
Previous Article
The method of averaging for Poisson connections on foliations and its applications
- JGM Home
- This Issue
-
Next Article
Preface to the special issue dedicated to James Montaldi
Relative equilibria of the 3-body problem in $ \mathbb{R}^4 $
1. | IMCCE, UMR8028, Observatoire de Paris, 77 avenue Denfert-Rochereau, 75014 Paris, France |
2. | School of Mathematics and Statistics, University of Sydney, Sydney NSW 2006, Australia |
The classical equations of the Newtonian 3-body problem do not only define the familiar 3-dimensional motions. The dimension of the motion may also be 4, and cannot be higher. We prove that in dimension 4, for three arbitrary positive masses, and for an arbitrary value (of rank 4) of the angular momentum, the energy possesses a minimum, which corresponds to a motion of relative equilibrium which is Lyapunov stable when considered as an equilibrium of the reduced problem. The nearby motions are nonsingular and bounded for all time. We also describe the full family of relative equilibria, and show that its image by the energy-momentum map presents cusps and other interesting features.
References:
[1] |
A. Albouy, Mutual distances in celestial mechanics, Lectures at Nankai institute, Tianjin, China, preprint, (2004). |
[2] |
A. Albouy, H. E. Cabral and A. A. Santos,
Some problems on the classical $n$-body problem, Celestial Mechanics and Dynamical Astronomy, 113 (2012), 369-375.
doi: 10.1007/s10569-012-9431-1. |
[3] |
A. Albouy and A. Chenciner,
Le problème des $n$ corps et les distances mutuelles, Invent. Math., 131 (1998), 151-184.
doi: 10.1007/s002220050200. |
[4] |
A. Chenciner,
The angular momentum of a relative equilibrium, Discrete Contin. Dyn. Syst., 33 (2013), 1033-1047.
doi: 10.3934/dcds.2013.33.1033. |
[5] |
A. Chenciner and H. Jiménez-Pérez, Angular momentum and Horn's problem, Mosc. Math. J., 13 (2013), 621–630,737.
doi: 10.17323/1609-4514-2013-13-4-621-630. |
[6] |
H. R. Dullin,
The Lie-Poisson structure of the reduced $n$-body problem, Nonlinearity, 26 (2013), 1565-1579.
doi: 10.1088/0951-7715/26/6/1565. |
[7] |
H. R. Dullin and J. Scheurle, Symmetry reduction of the 3-body problem in $R^4$, J. Geom. Mech., 12 2020, 377-394.
doi: 10.3934/jgm.2020011. |
[8] |
M. Herman,
Some open problems in dynamical systems, Doc. Math., 2 (1998), 797-808.
|
[9] | |
[10] |
R. Moeckel,
Minimal energy configurations of gravitationally interacting rigid bodies, Celestial Mechanics and Dynamical Astronomy, 128 (2017), 3-18.
doi: 10.1007/s10569-016-9743-7. |
[11] |
D. J. Scheeres,
Minimum energy configurations in the $N$-body problem and the celestial mechanics of granular systems, Celestial Mechanics and Dynamical Astronomy, 113 (2012), 291-320.
doi: 10.1007/s10569-012-9416-0. |
[12] |
K. F. Sundman,
Mémoire sur le problème des trois corps, Acta mathematica, 36 (1913), 105-179.
doi: 10.1007/BF02422379. |
[13] |
A. Wintner, The Analytical Foundations of Celestial Mechanics, Princeton Mathematical Series, 5. Princeton University Press, Princeton, N. J., 1941.
![]() ![]() |
show all references
References:
[1] |
A. Albouy, Mutual distances in celestial mechanics, Lectures at Nankai institute, Tianjin, China, preprint, (2004). |
[2] |
A. Albouy, H. E. Cabral and A. A. Santos,
Some problems on the classical $n$-body problem, Celestial Mechanics and Dynamical Astronomy, 113 (2012), 369-375.
doi: 10.1007/s10569-012-9431-1. |
[3] |
A. Albouy and A. Chenciner,
Le problème des $n$ corps et les distances mutuelles, Invent. Math., 131 (1998), 151-184.
doi: 10.1007/s002220050200. |
[4] |
A. Chenciner,
The angular momentum of a relative equilibrium, Discrete Contin. Dyn. Syst., 33 (2013), 1033-1047.
doi: 10.3934/dcds.2013.33.1033. |
[5] |
A. Chenciner and H. Jiménez-Pérez, Angular momentum and Horn's problem, Mosc. Math. J., 13 (2013), 621–630,737.
doi: 10.17323/1609-4514-2013-13-4-621-630. |
[6] |
H. R. Dullin,
The Lie-Poisson structure of the reduced $n$-body problem, Nonlinearity, 26 (2013), 1565-1579.
doi: 10.1088/0951-7715/26/6/1565. |
[7] |
H. R. Dullin and J. Scheurle, Symmetry reduction of the 3-body problem in $R^4$, J. Geom. Mech., 12 2020, 377-394.
doi: 10.3934/jgm.2020011. |
[8] |
M. Herman,
Some open problems in dynamical systems, Doc. Math., 2 (1998), 797-808.
|
[9] | |
[10] |
R. Moeckel,
Minimal energy configurations of gravitationally interacting rigid bodies, Celestial Mechanics and Dynamical Astronomy, 128 (2017), 3-18.
doi: 10.1007/s10569-016-9743-7. |
[11] |
D. J. Scheeres,
Minimum energy configurations in the $N$-body problem and the celestial mechanics of granular systems, Celestial Mechanics and Dynamical Astronomy, 113 (2012), 291-320.
doi: 10.1007/s10569-012-9416-0. |
[12] |
K. F. Sundman,
Mémoire sur le problème des trois corps, Acta mathematica, 36 (1913), 105-179.
doi: 10.1007/BF02422379. |
[13] |
A. Wintner, The Analytical Foundations of Celestial Mechanics, Princeton Mathematical Series, 5. Princeton University Press, Princeton, N. J., 1941.
![]() ![]() |






[1] |
Holger R. Dullin, Jürgen Scheurle. Symmetry reduction of the 3-body problem in $ \mathbb{R}^4 $. Journal of Geometric Mechanics, 2020, 12 (3) : 377-394. doi: 10.3934/jgm.2020011 |
[2] |
Gianni Arioli. Branches of periodic orbits for the planar restricted 3-body problem. Discrete and Continuous Dynamical Systems, 2004, 11 (4) : 745-755. doi: 10.3934/dcds.2004.11.745 |
[3] |
Giovanni F. Gronchi, Chiara Tardioli. The evolution of the orbit distance in the double averaged restricted 3-body problem with crossing singularities. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1323-1344. doi: 10.3934/dcdsb.2013.18.1323 |
[4] |
Alain Chenciner, Jacques Féjoz. The flow of the equal-mass spatial 3-body problem in the neighborhood of the equilateral relative equilibrium. Discrete and Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 421-438. doi: 10.3934/dcdsb.2008.10.421 |
[5] |
Qunyao Yin, Shiqing Zhang. New periodic solutions for the circular restricted 3-body and 4-body problems. Communications on Pure and Applied Analysis, 2010, 9 (1) : 249-260. doi: 10.3934/cpaa.2010.9.249 |
[6] |
L. Búa, T. Mestdag, M. Salgado. Symmetry reduction, integrability and reconstruction in $k$-symplectic field theory. Journal of Geometric Mechanics, 2015, 7 (4) : 395-429. doi: 10.3934/jgm.2015.7.395 |
[7] |
Florin Diacu, Shuqiang Zhu. Almost all 3-body relative equilibria on $ \mathbb S^2 $ and $ \mathbb H^2 $ are inclined. Discrete and Continuous Dynamical Systems - S, 2020, 13 (4) : 1131-1143. doi: 10.3934/dcdss.2020067 |
[8] |
Joshua Cape, Hans-Christian Herbig, Christopher Seaton. Symplectic reduction at zero angular momentum. Journal of Geometric Mechanics, 2016, 8 (1) : 13-34. doi: 10.3934/jgm.2016.8.13 |
[9] |
Elbaz I. Abouelmagd, Juan Luis García Guirao, Jaume Llibre. Periodic orbits for the perturbed planar circular restricted 3–body problem. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1007-1020. doi: 10.3934/dcdsb.2019003 |
[10] |
Martha Alvarez-Ramírez, Joaquín Delgado. Blow up of the isosceles 3--body problem with an infinitesimal mass. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1149-1173. doi: 10.3934/dcds.2003.9.1149 |
[11] |
Samuel R. Kaplan, Ernesto A. Lacomba, Jaume Llibre. Symbolic dynamics of the elliptic rectilinear restricted 3--body problem. Discrete and Continuous Dynamical Systems - S, 2008, 1 (4) : 541-555. doi: 10.3934/dcdss.2008.1.541 |
[12] |
Sergey V. Bolotin, Piero Negrini. Variational approach to second species periodic solutions of Poincaré of the 3 body problem. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1009-1032. doi: 10.3934/dcds.2013.33.1009 |
[13] |
Abimael Bengochea, Manuel Falconi, Ernesto Pérez-Chavela. Horseshoe periodic orbits with one symmetry in the general planar three-body problem. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 987-1008. doi: 10.3934/dcds.2013.33.987 |
[14] |
E. García-Toraño Andrés, Bavo Langerock, Frans Cantrijn. Aspects of reduction and transformation of Lagrangian systems with symmetry. Journal of Geometric Mechanics, 2014, 6 (1) : 1-23. doi: 10.3934/jgm.2014.6.1 |
[15] |
Heinz Schättler, Urszula Ledzewicz. Lyapunov-Schmidt reduction for optimal control problems. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 2201-2223. doi: 10.3934/dcdsb.2012.17.2201 |
[16] |
C. D. Ahlbrandt, A. C. Peterson. A general reduction of order theorem for discrete linear symplectic systems. Conference Publications, 1998, 1998 (Special) : 7-18. doi: 10.3934/proc.1998.1998.7 |
[17] |
Regina Martínez, Carles Simó. On the stability of the Lagrangian homographic solutions in a curved three-body problem on $\mathbb{S}^2$. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1157-1175. doi: 10.3934/dcds.2013.33.1157 |
[18] |
Xiaojun Chang, Tiancheng Ouyang, Duokui Yan. Linear stability of the criss-cross orbit in the equal-mass three-body problem. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 5971-5991. doi: 10.3934/dcds.2016062 |
[19] |
Hadia H. Selim, Juan L. G. Guirao, Elbaz I. Abouelmagd. Libration points in the restricted three-body problem: Euler angles, existence and stability. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 703-710. doi: 10.3934/dcdss.2019044 |
[20] |
Qinglong Zhou, Yongchao Zhang. Analytic results for the linear stability of the equilibrium point in Robe's restricted elliptic three-body problem. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1763-1787. doi: 10.3934/dcds.2017074 |
2020 Impact Factor: 0.857
Tools
Metrics
Other articles
by authors
[Back to Top]