September  2020, 12(3): 323-341. doi: 10.3934/jgm.2020012

Relative equilibria of the 3-body problem in $ \mathbb{R}^4 $

1. 

IMCCE, UMR8028, Observatoire de Paris, 77 avenue Denfert-Rochereau, 75014 Paris, France

2. 

School of Mathematics and Statistics, University of Sydney, Sydney NSW 2006, Australia

Dedicated to James Montaldi

Received  September 2019 Revised  December 2019 Published  March 2020

The classical equations of the Newtonian 3-body problem do not only define the familiar 3-dimensional motions. The dimension of the motion may also be 4, and cannot be higher. We prove that in dimension 4, for three arbitrary positive masses, and for an arbitrary value (of rank 4) of the angular momentum, the energy possesses a minimum, which corresponds to a motion of relative equilibrium which is Lyapunov stable when considered as an equilibrium of the reduced problem. The nearby motions are nonsingular and bounded for all time. We also describe the full family of relative equilibria, and show that its image by the energy-momentum map presents cusps and other interesting features.

Citation: Alain Albouy, Holger R. Dullin. Relative equilibria of the 3-body problem in $ \mathbb{R}^4 $. Journal of Geometric Mechanics, 2020, 12 (3) : 323-341. doi: 10.3934/jgm.2020012
References:
[1]

A. Albouy, Mutual distances in celestial mechanics, Lectures at Nankai institute, Tianjin, China, preprint, (2004). Google Scholar

[2]

A. AlbouyH. E. Cabral and A. A. Santos, Some problems on the classical $n$-body problem, Celestial Mechanics and Dynamical Astronomy, 113 (2012), 369-375.  doi: 10.1007/s10569-012-9431-1.  Google Scholar

[3]

A. Albouy and A. Chenciner, Le problème des $n$ corps et les distances mutuelles, Invent. Math., 131 (1998), 151-184.  doi: 10.1007/s002220050200.  Google Scholar

[4]

A. Chenciner, The angular momentum of a relative equilibrium, Discrete Contin. Dyn. Syst., 33 (2013), 1033-1047.  doi: 10.3934/dcds.2013.33.1033.  Google Scholar

[5]

A. Chenciner and H. Jiménez-Pérez, Angular momentum and Horn's problem, Mosc. Math. J., 13 (2013), 621–630,737. doi: 10.17323/1609-4514-2013-13-4-621-630.  Google Scholar

[6]

H. R. Dullin, The Lie-Poisson structure of the reduced $n$-body problem, Nonlinearity, 26 (2013), 1565-1579.  doi: 10.1088/0951-7715/26/6/1565.  Google Scholar

[7]

H. R. Dullin and J. Scheurle, Symmetry reduction of the 3-body problem in $R^4$, J. Geom. Mech., 12 2020, 377-394. doi: 10.3934/jgm.2020011.  Google Scholar

[8]

M. Herman, Some open problems in dynamical systems, Doc. Math., 2 (1998), 797-808.   Google Scholar

[9]

J. L. Lagrange, Méchanique Analitique, Paris, 1788. Google Scholar

[10]

R. Moeckel, Minimal energy configurations of gravitationally interacting rigid bodies, Celestial Mechanics and Dynamical Astronomy, 128 (2017), 3-18.  doi: 10.1007/s10569-016-9743-7.  Google Scholar

[11]

D. J. Scheeres, Minimum energy configurations in the $N$-body problem and the celestial mechanics of granular systems, Celestial Mechanics and Dynamical Astronomy, 113 (2012), 291-320.  doi: 10.1007/s10569-012-9416-0.  Google Scholar

[12]

K. F. Sundman, Mémoire sur le problème des trois corps, Acta mathematica, 36 (1913), 105-179.  doi: 10.1007/BF02422379.  Google Scholar

[13] A. Wintner, The Analytical Foundations of Celestial Mechanics, Princeton Mathematical Series, 5. Princeton University Press, Princeton, N. J., 1941.   Google Scholar

show all references

References:
[1]

A. Albouy, Mutual distances in celestial mechanics, Lectures at Nankai institute, Tianjin, China, preprint, (2004). Google Scholar

[2]

A. AlbouyH. E. Cabral and A. A. Santos, Some problems on the classical $n$-body problem, Celestial Mechanics and Dynamical Astronomy, 113 (2012), 369-375.  doi: 10.1007/s10569-012-9431-1.  Google Scholar

[3]

A. Albouy and A. Chenciner, Le problème des $n$ corps et les distances mutuelles, Invent. Math., 131 (1998), 151-184.  doi: 10.1007/s002220050200.  Google Scholar

[4]

A. Chenciner, The angular momentum of a relative equilibrium, Discrete Contin. Dyn. Syst., 33 (2013), 1033-1047.  doi: 10.3934/dcds.2013.33.1033.  Google Scholar

[5]

A. Chenciner and H. Jiménez-Pérez, Angular momentum and Horn's problem, Mosc. Math. J., 13 (2013), 621–630,737. doi: 10.17323/1609-4514-2013-13-4-621-630.  Google Scholar

[6]

H. R. Dullin, The Lie-Poisson structure of the reduced $n$-body problem, Nonlinearity, 26 (2013), 1565-1579.  doi: 10.1088/0951-7715/26/6/1565.  Google Scholar

[7]

H. R. Dullin and J. Scheurle, Symmetry reduction of the 3-body problem in $R^4$, J. Geom. Mech., 12 2020, 377-394. doi: 10.3934/jgm.2020011.  Google Scholar

[8]

M. Herman, Some open problems in dynamical systems, Doc. Math., 2 (1998), 797-808.   Google Scholar

[9]

J. L. Lagrange, Méchanique Analitique, Paris, 1788. Google Scholar

[10]

R. Moeckel, Minimal energy configurations of gravitationally interacting rigid bodies, Celestial Mechanics and Dynamical Astronomy, 128 (2017), 3-18.  doi: 10.1007/s10569-016-9743-7.  Google Scholar

[11]

D. J. Scheeres, Minimum energy configurations in the $N$-body problem and the celestial mechanics of granular systems, Celestial Mechanics and Dynamical Astronomy, 113 (2012), 291-320.  doi: 10.1007/s10569-012-9416-0.  Google Scholar

[12]

K. F. Sundman, Mémoire sur le problème des trois corps, Acta mathematica, 36 (1913), 105-179.  doi: 10.1007/BF02422379.  Google Scholar

[13] A. Wintner, The Analytical Foundations of Celestial Mechanics, Princeton Mathematical Series, 5. Princeton University Press, Princeton, N. J., 1941.   Google Scholar
Figure 2.  Three distinct masses $ (m_1, m_2, m_3) = (3, 2, 1)/6 $. The Lagrange equilateral family is the vertical line, not extending all the way to $ k = 1/4 $. The three non-equilateral families emerge from Euler's collinear configurations at $ k = 0 $ and for $ h \to -\infty $ approach collision configurations. The two short families have a cusp each. The long family emerges at the Euler collinear configuration with the smallest energy, then touches the endpoint of the equilateral family, and then is tangent to the maximum at $ k = 1/4 $. Past this tangency it corresponds to minimal energy at fixed $ k $ and hence is non-linearly stable
Figure 3.  Equal mass case. The Lagrange equilateral family is the vertical line, in this case extending all the way to $ k = 1/4 $. The three isosceles families coincide and emerge at the collinear Euler solution at $ k = 0 $. Isosceles triangles with $ \rho < 1 $ are non-linearly stable because they are minima in the energy for fixed $ k $
Figure 4.  Two equal masses, third mass smaller ($ \mu = 1/2 $). The Lagrange equilateral family is the vertical line, not extending all the way to $ k = 1/4 $. At the endpoint it meets the isosceles long family, which later touches $ k = 1/4 $. Both short families of asymmetric triangles emerge from a collinear Euler configuration at $ k = 0 $ and have a cusp beyond which $ h $ approaches $ -\infty $. The isosceles configurations to the left of the tangency with $ k = 1/4 $ are the absolute minimum of the energy and hence are non-linearly stable
Figure 5.  Two equal masses, third mass bigger ($ \mu = 2 $). The Lagrange equilateral family is the vertical line, not extending all the way to $ k = 1/4 $. At the endpoint it meets the long isosceles family (red), which later touches $ k = 1/4 $. One short family (green) of asymmetric triangles emerges from a collinear Euler configuration at $ k = 0 $, has a cusp tangent to the long family and retraces itself back down. The other short family (blue) of asymmetric triangles starts and finishes at the collision where $ h \to -\infty $, and has a cusp tangent to the long family. These asymmetric triangles of absolute minimal energy are non-linearly stable. There is a tiny part of the long family of symmetric isosceles triangles which have absolute minimal energy and hence are non-linearly stable
Figure 6.  Three distinct masses, somewhat close to the two isosceles cases. Left: masses $ (12, 5, 4)/21 $, Right: masses $ (6, 5, 2)/13 $. The left figure illustrates that there is no continuity in the balanced families when perturbing from the case with two equal masses and the third mass larger than the equal ones, compare Fig. 5
Figure 1.  Three smooth families of balanced configurations. Long family red, short families blue and green. Masses $ (m_1, m_2, m_3) = (3, 2, 1)/6 $. Isosceles shapes are shown as dashed blue lines. Left: $ a(b) $ for $ c = 1 $, the long family exists for all values of $ b $. Right: The extended triangle of shapes $ I = const $ with boundary black dashed where one side length vanishes. The thick black ellipse marks shapes with area $ A = 0 $ with contour lines of constant positive area inside. The other set of contour lines indicate $ V = const $. Special points are marked by their projective triple $ [a, b, c] $
[1]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[2]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[3]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[4]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[5]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[6]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[7]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[8]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[9]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[10]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[11]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[12]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[13]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[14]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[15]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[16]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[17]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[18]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[19]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[20]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (117)
  • HTML views (432)
  • Cited by (0)

Other articles
by authors

[Back to Top]