June  2020, 12(2): 165-308. doi: 10.3934/jgm.2020013

Nonholonomic and constrained variational mechanics

Department of Mathematics and Statistics, Queeen's University, Kingston, ON K7L 3N6, Canada

Received  December 2018 Revised  January 2020 Published  June 2020

Fund Project: Research supported in part by a grant from the Natural Sciences and Engineering Research Council of Canada

Equations governing mechanical systems with nonholonomic constraints can be developed in two ways: (1) using the physical principles of Newtonian mechanics; (2) using a constrained variational principle. Generally, the two sets of resulting equations are not equivalent. While mechanics arises from the first of these methods, sub-Riemannian geometry is a special case of the second. Thus both sets of equations are of independent interest.

The equations in both cases are carefully derived using a novel Sobolev analysis where infinite-dimensional Hilbert manifolds are replaced with infinite-dimensional Hilbert spaces for the purposes of analysis. A useful representation of these equations is given using the so-called constrained connection derived from the system's Riemannian metric, and the constraint distribution and its orthogonal complement. In the special case of sub-Riemannian geometry, some observations are made about the affine connection formulation of the equations for extremals.

Using the affine connection formulation of the equations, the physical and variational equations are compared and conditions are given that characterise when all physical solutions arise as extremals in the variational formulation. The characterisation is complete in the real analytic case, while in the smooth case a locally constant rank assumption must be made. The main construction is that of the largest affine subbundle variety of a subbundle that is invariant under the flow of an affine vector field on the total space of a vector bundle.

Citation: Andrew D. Lewis. Nonholonomic and constrained variational mechanics. Journal of Geometric Mechanics, 2020, 12 (2) : 165-308. doi: 10.3934/jgm.2020013
References:
[1]

R. Abraham, J. E. Marsden and T. Ratiu, Manifolds, Tensor Analysis, and Applications, Applied Mathematical Sciences, 75, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4612-1029-0.  Google Scholar

[2] R. A. Adams and J. J. F. Fournier, Sobolev Spaces, Pure and Applied Mathematics, 140, Elsevier/Academic Press, Amsterdam, 2003.   Google Scholar
[3]

A. A. Agrachev and R. V. Gamkrelidze, Exponential representation of flows and a chronological enumeration, Mat. Sb. (N.S.), 107 (1978), 467–532,639.  Google Scholar

[4]

A. A. Agrachev, D. Barilari and U. Boscain, A Comprehensive Introduction to SubRiemannian Geometry, Cambridge Studies in Advanced Mathematics, 181, Cambridge University Press, Cambridge, 2020. doi: 10.1017/9781108677325.  Google Scholar

[5]

C. D. Aliprantis and K. C. Border, Infinite-Dimensional Analysis. A Hitchhiker's Guide, Springer, Berlin, 2006. doi: 10.1007/3-540-29587-9.  Google Scholar

[6]

M. Berger, Geometry I, Universitext, Springer-Verlag, Berlin, 1987. doi: 10.1007/978-3-540-93815-6.  Google Scholar

[7]

A. V. BorisovI. S. Mamaev and I. A. Bizyaev, Dynamical systems with non-integrable constraints: Vakonomic mechanics, sub-Riemannian geometry, and non-holonomic mechanics, Russian Math. Surveys, 72 (2017), 783-840.  doi: 10.4213/rm9783.  Google Scholar

[8]

F. Bullo and A. D. Lewis, Geometric Control of Mechanical Systems. Modeling, Analysis, and Design for Simple Mechanical Control Systems, Texts in Applied Mathematics, 49, Springer-Verlag, New York, 2005. doi: 10.1007/978-1-4899-7276-7.  Google Scholar

[9]

F. CantrijnJ. CortésM. de León and D. Martín de Diego, On the geometry of generalised Chaplygin systems, Math. Proc. Cambridge Philos. Soc., 132 (2002), 323-351.  doi: 10.1017/S0305004101005679.  Google Scholar

[10]

F. Cardin and M. Favretti, On nonholonomic and vakonomic dynamics of mechanical systems with nonintegrable constraints, J. Geom. Phys., 18 (1996), 295-325.  doi: 10.1016/0393-0440(95)00016-X.  Google Scholar

[11]

H. Cartan, Variétés analytiques réelles et variétés analytiques complexes, Bull. Soc. Math. France, 85 (1957), 77-99.   Google Scholar

[12]

W.-L. Chow, Über Systemen von linearen partiellen Differentialgleichungen erster Ordnung, Math. Ann., 117 (1939), 98-105.  doi: 10.1007/BF01450011.  Google Scholar

[13]

A. Convent and J. Van Schaftingen, Geometric partial differentiability on manifolds: The tangential derivative and the chain rule, J. Math. Anal. Appl., 435 (2016), 1672-1681.  doi: 10.1016/j.jmaa.2015.11.036.  Google Scholar

[14]

A. Convent and J. Van Schaftingen, Intrinsic co-local weak derivatives and Sobolev spaces between manifolds, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 16 (2016), 97-128.  doi: 10.2422/2036-2145.201312_005.  Google Scholar

[15]

A. Convent and J. Van Schaftingen, Higher order intrinsic weak differentiability and Sobolev spaces between manifolds, Adv. Calc. Var., 12 (2019), 303-332.  doi: 10.1515/acv-2017-0008.  Google Scholar

[16]

J. CortésM. de LeónD. Martín de Diego and S. Martínez, Geometric description of vakonomic and nonholonomic dynamics. Comparison of solutions, SIAM J. Control Optim., 41 (2002), 1389-1412.  doi: 10.1137/S036301290036817X.  Google Scholar

[17]

M. Crampin and T. Mestdag, Anholonomic frames in constrained dynamics, Dyn. Syst., 25 (2010), 159-187.  doi: 10.1080/14689360903360888.  Google Scholar

[18]

M. Favretti, Equivalence of dynamics for nonholonomic systems with transverse constraints, J. Dynam. Differential Equations, 10 (1998), 511-536.  doi: 10.1023/A:1022667307485.  Google Scholar

[19]

H. Federer, Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften, Band, 153, Springer-Verlag New York Inc., New York, 1969.  Google Scholar

[20]

H. Federer, Geometric Measure Theory, Classics in Mathematics, Springer-Verlag Berlin Heidelberg, 1996. doi: 10.1007/978-3-642-62010-2.  Google Scholar

[21]

C. Fefferman and J. Kollár, Continuous solutions of linear equations, in From Fourier Analysis and Number Theory to Radon Transforms and Geometry, Dev. Math., 28, Springer, New York, 2013,233–282. doi: 10.1007/978-1-4614-4075-8_10.  Google Scholar

[22]

O. E. Fernandez and A. M. Bloch, Equivalence of the dynamics of nonholonomic and variational nonholonomic systems for certain initial data, J. Phys. A, 41 (2008), 20pp. doi: 10.1088/1751-8113/41/34/344005.  Google Scholar

[23]

H. L. Goldschmidt, Existence theorems for analytic linear partial differential equations, Ann. of Math. (2), 86 (1967), 246-270.  doi: 10.2307/1970689.  Google Scholar

[24]

H. Goldschmidt, Integrability criteria for systems of nonlinear partial differential equations, J. Differential Geometry, 1 (1967), 269-307.  doi: 10.4310/jdg/1214428094.  Google Scholar

[25]

X. GráciaJ. Marin-Solano and M.-C. Muñoz-Lecanda, Some geometric aspects of variational calculus in constrained systems, Rep. Math. Phys., 51 (2003), 127-148.  doi: 10.1016/S0034-4877(03)80006-X.  Google Scholar

[26]

H. Grauert, On Levi's problem and the imbedding of real-analytic manifolds, Ann. of Math. (2), 68 (1958), 460-472.  doi: 10.2307/1970257.  Google Scholar

[27]

H. Grauert and R. Remmert, Coherent Analytic Sheaves, Grundlehren der Mathematischen Wissenschaften, 265, Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-642-69582-7.  Google Scholar

[28]

S. Jafarpour and A. D. Lewis, Time-Varying Vector Fields and Their Flows, SpringerBriefs in Mathematics, Springer, New York, 2014. doi: 10.1007/978-3-319-10139-2.  Google Scholar

[29]

J. Jost, Postmodern Analysis, Universitext, Springer-Verlag, Berlin, 2003. doi: 10.1007/978-3-662-05306-5.  Google Scholar

[30]

M. Jóźwikowski and W. Respondek, A comparison of vakonomic and nonholonomic dynamics with applications to non-invariant Chaplygin systems, J. Geom. Mech., 11 (2019), 77-122.  doi: 10.3934/jgm.2019005.  Google Scholar

[31]

P. V. Kharlomov, A critique of some mathematical models of mechanical systems with differential constraints, J. Appl. Math. Mech., 56 (1992), 584-594.  doi: 10.1016/0021-8928(92)90016-2.  Google Scholar

[32]

W. Klingenberg, Riemannian Geometry, de Gruyter Studies in Mathematics, 1, Walter de Gruyter & Co., Berlin/New York, 1982.  Google Scholar

[33]

S. Kobayashi and K. Nomizu, Foundations of Differential Geometry. Vol. I, Interscience Publishers, a division of John Wiley & Sons, New York-London, 1963.  Google Scholar

[34]

J. Koiller, Reduction of some classical nonholonomic systems with symmetry, Arch. Rational Mech. Anal., 118 (1992), 113-148.  doi: 10.1007/BF00375092.  Google Scholar

[35]

I. Kolář, P. W. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993. doi: 10.1007/978-3-662-02950-3.  Google Scholar

[36]

V. V. Kozlov, The problem of realizing constraints in dynamics, J. Appl. Math. Mech., 56 (1992), 594-600.  doi: 10.1016/0021-8928(92)90017-3.  Google Scholar

[37]

I. Kupka and W. M. Oliva, The non-holonomic mechanics, J. Differential Equations, 169 (2001), 169-189.  doi: 10.1006/jdeq.2000.3897.  Google Scholar

[38]

B. Langerok, A connection theoretic approach to sub-Riemannian geometry, J. Geom. Phys., 46 (2003), 203-230.  doi: 10.1016/S0393-0440(02)00026-8.  Google Scholar

[39]

J. M. Lee, Riemannian Manifolds, Graduate Texts in Mathematics, 176, Springer-Verlag, New York, 1997. doi: 10.1007/b98852.  Google Scholar

[40]

A. D. Lewis, Affine connections and distributions with applications to nonholonomic mechanics, Rep. Math. Phys., 42 (1998), 135-164.  doi: 10.1016/S0034-4877(98)80008-6.  Google Scholar

[41]

A. D. Lewis, Generalised Subbundles, Distributions, and Families of Vector Fields. A Comprehensive Review, Lecture Notes from ICMAT Summer School, Madrid, 2012. Available from: http://www.mast.queensu.ca/ andrew/notes/abstracts/2011a.html. Google Scholar

[42]

A. D. Lewis, The physical foundations of geometric mechanics, J. Geom. Mech., 9 (2017), 487-574.  doi: 10.3934/jgm.2017019.  Google Scholar

[43]

A. D. Lewis and R. M. Murray, Variational principles for constrained systems: Theory and experiment, Internat. J. Non-Linear Mech., 30 (1995), 793-815.  doi: 10.1016/0020-7462(95)00024-0.  Google Scholar

[44]

W. Liu and H. J. Sussmann, Abnormal sub-Riemannian minimizers, in Differential Equations, Dynamical Systems, and Control Science, Lecture Notes in Pure and Appl. Math., 152, Dekker, New York, 1994,705–716.  Google Scholar

[45]

P. W. Michor, Manifolds of Differentiable Mappings, Shiva Mathematics Series, 3, Shiva Publishing Ltd., Nantwich, 1980.  Google Scholar

[46]

E. Minguzzi, The equality of mixed partial derivatives under weak differentiability conditions, Real Anal. Exchange, 40 (2014/15), 81-97.  doi: 10.14321/realanalexch.40.1.0081.  Google Scholar

[47]

J. Nestruev, Smooth Manifolds and Observables, Graduate Texts in Mathematics, 220, Springer-Verlag, New York, 2003. doi: 10.1007/b98871.  Google Scholar

[48]

G. P. Paternain, Geodesic Flows, Progress in Mathematics, 180, Birkhäuser Boston, Inc., Boston, MA, 1999. doi: 10.1007/978-1-4612-1600-1.  Google Scholar

[49]

P. Petersen, Riemannian Geometry, Graduate Texts in Mathematics, 171, Springer, New York, 2006. doi: 10.1007/978-0-387-29403-2.  Google Scholar

[50]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, Matematicheskaya teoriya optimal' nykh protsessov, Gosudarstvennoe izdatelstvo fiziko-matematicheskoi literatury, Moscow, 1961. Google Scholar

[51]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Interscience Publishers John Wiley & Sons, Inc., New York-London, 1962.  Google Scholar

[52]

S. Ramanan, Global Calculus, Graduate Studies in Mathematics, 65, American Mathematical Society, Providence, RI, 2005.  Google Scholar

[53]

V. V. Rumiantsev, On Hamilton's principle for nonholonomic systems, Prikl. Mat. Mekh., 42 (1978), 387-399.   Google Scholar

[54]

S. Sasaki, On the differential geometry of tangent bundles of Riemannian manifolds, Tohoku Math. J. (2), 10 (1958), 338-354.  doi: 10.2748/tmj/1178244668.  Google Scholar

[55]

E. D. Sontag, Mathematical Control Theory. Deterministic Finite-Dimensional Systems, Texts in Applied Mathematics, 6, Springer-Verlag, New York, 1998. doi: 10.1007/978-1-4612-0577-7.  Google Scholar

[56]

H. J. Sussmann, Smooth distributions are globally finitely spanned, in Analysis and Design of Nonlinear Control Systems, Springer, Berlin, 2008, 3–8. doi: 10.1007/978-3-540-74358-3_1.  Google Scholar

[57]

J. L. Synge, Geodesics in non-holonomic geometry, Math. Ann., 99 (1928), 738-751.  doi: 10.1007/BF01459122.  Google Scholar

[58]

G. Terra, Vakonomic versus nonholonomic mechanics revisited, São Paulo J. Math. Sci., 12 (2018), 136-145.  doi: 10.1007/s40863-017-0062-z.  Google Scholar

[59]

G. Terra and M. H. Kobayashi, On the classical mechanical systems with non-linear constraints, J. Geom. Phys., 49 (2004), 385-417.  doi: 10.1016/j.geomphys.2003.08.005.  Google Scholar

[60]

G. Terra and M. H. Kobayashi, On the variational mechanics with non-linear constraints, J. Math. Pures Appl. (9), 83 (2004), 629-671.  doi: 10.1016/S0021-7824(03)00069-2.  Google Scholar

[61]

A. M. Vershik and V. Y. Gershkovich, Nonholonomic dynamical systems. Geometry of distributions and variational problems, in Current problems in mathematics. Fundamental directions, Vol. 16 (Russian), Itogi Nauki i Tekhniki, 307, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1987, 5–85.  Google Scholar

[62]

R. O. Wells Jr, Differential Analysis on Complex Manifolds, Graduate Texts in Mathematics, 65, Springer, New York, 2008. doi: 10.1007/978-0-387-73892-5.  Google Scholar

[63]

H. Whitney, Differentiable manifolds, Ann. of Math. (2), 37 (1936), 645-680.  doi: 10.2307/1968482.  Google Scholar

[64]

G. Zampieri, Nonholonomic versus vakonomic dynamics, J. Differential Equations, 163 (2000), 335-347.  doi: 10.1006/jdeq.1999.3727.  Google Scholar

[65]

W. P. Ziemer, Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation, Graduate Texts in Mathematics, 120, Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4612-1015-3.  Google Scholar

show all references

References:
[1]

R. Abraham, J. E. Marsden and T. Ratiu, Manifolds, Tensor Analysis, and Applications, Applied Mathematical Sciences, 75, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4612-1029-0.  Google Scholar

[2] R. A. Adams and J. J. F. Fournier, Sobolev Spaces, Pure and Applied Mathematics, 140, Elsevier/Academic Press, Amsterdam, 2003.   Google Scholar
[3]

A. A. Agrachev and R. V. Gamkrelidze, Exponential representation of flows and a chronological enumeration, Mat. Sb. (N.S.), 107 (1978), 467–532,639.  Google Scholar

[4]

A. A. Agrachev, D. Barilari and U. Boscain, A Comprehensive Introduction to SubRiemannian Geometry, Cambridge Studies in Advanced Mathematics, 181, Cambridge University Press, Cambridge, 2020. doi: 10.1017/9781108677325.  Google Scholar

[5]

C. D. Aliprantis and K. C. Border, Infinite-Dimensional Analysis. A Hitchhiker's Guide, Springer, Berlin, 2006. doi: 10.1007/3-540-29587-9.  Google Scholar

[6]

M. Berger, Geometry I, Universitext, Springer-Verlag, Berlin, 1987. doi: 10.1007/978-3-540-93815-6.  Google Scholar

[7]

A. V. BorisovI. S. Mamaev and I. A. Bizyaev, Dynamical systems with non-integrable constraints: Vakonomic mechanics, sub-Riemannian geometry, and non-holonomic mechanics, Russian Math. Surveys, 72 (2017), 783-840.  doi: 10.4213/rm9783.  Google Scholar

[8]

F. Bullo and A. D. Lewis, Geometric Control of Mechanical Systems. Modeling, Analysis, and Design for Simple Mechanical Control Systems, Texts in Applied Mathematics, 49, Springer-Verlag, New York, 2005. doi: 10.1007/978-1-4899-7276-7.  Google Scholar

[9]

F. CantrijnJ. CortésM. de León and D. Martín de Diego, On the geometry of generalised Chaplygin systems, Math. Proc. Cambridge Philos. Soc., 132 (2002), 323-351.  doi: 10.1017/S0305004101005679.  Google Scholar

[10]

F. Cardin and M. Favretti, On nonholonomic and vakonomic dynamics of mechanical systems with nonintegrable constraints, J. Geom. Phys., 18 (1996), 295-325.  doi: 10.1016/0393-0440(95)00016-X.  Google Scholar

[11]

H. Cartan, Variétés analytiques réelles et variétés analytiques complexes, Bull. Soc. Math. France, 85 (1957), 77-99.   Google Scholar

[12]

W.-L. Chow, Über Systemen von linearen partiellen Differentialgleichungen erster Ordnung, Math. Ann., 117 (1939), 98-105.  doi: 10.1007/BF01450011.  Google Scholar

[13]

A. Convent and J. Van Schaftingen, Geometric partial differentiability on manifolds: The tangential derivative and the chain rule, J. Math. Anal. Appl., 435 (2016), 1672-1681.  doi: 10.1016/j.jmaa.2015.11.036.  Google Scholar

[14]

A. Convent and J. Van Schaftingen, Intrinsic co-local weak derivatives and Sobolev spaces between manifolds, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 16 (2016), 97-128.  doi: 10.2422/2036-2145.201312_005.  Google Scholar

[15]

A. Convent and J. Van Schaftingen, Higher order intrinsic weak differentiability and Sobolev spaces between manifolds, Adv. Calc. Var., 12 (2019), 303-332.  doi: 10.1515/acv-2017-0008.  Google Scholar

[16]

J. CortésM. de LeónD. Martín de Diego and S. Martínez, Geometric description of vakonomic and nonholonomic dynamics. Comparison of solutions, SIAM J. Control Optim., 41 (2002), 1389-1412.  doi: 10.1137/S036301290036817X.  Google Scholar

[17]

M. Crampin and T. Mestdag, Anholonomic frames in constrained dynamics, Dyn. Syst., 25 (2010), 159-187.  doi: 10.1080/14689360903360888.  Google Scholar

[18]

M. Favretti, Equivalence of dynamics for nonholonomic systems with transverse constraints, J. Dynam. Differential Equations, 10 (1998), 511-536.  doi: 10.1023/A:1022667307485.  Google Scholar

[19]

H. Federer, Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften, Band, 153, Springer-Verlag New York Inc., New York, 1969.  Google Scholar

[20]

H. Federer, Geometric Measure Theory, Classics in Mathematics, Springer-Verlag Berlin Heidelberg, 1996. doi: 10.1007/978-3-642-62010-2.  Google Scholar

[21]

C. Fefferman and J. Kollár, Continuous solutions of linear equations, in From Fourier Analysis and Number Theory to Radon Transforms and Geometry, Dev. Math., 28, Springer, New York, 2013,233–282. doi: 10.1007/978-1-4614-4075-8_10.  Google Scholar

[22]

O. E. Fernandez and A. M. Bloch, Equivalence of the dynamics of nonholonomic and variational nonholonomic systems for certain initial data, J. Phys. A, 41 (2008), 20pp. doi: 10.1088/1751-8113/41/34/344005.  Google Scholar

[23]

H. L. Goldschmidt, Existence theorems for analytic linear partial differential equations, Ann. of Math. (2), 86 (1967), 246-270.  doi: 10.2307/1970689.  Google Scholar

[24]

H. Goldschmidt, Integrability criteria for systems of nonlinear partial differential equations, J. Differential Geometry, 1 (1967), 269-307.  doi: 10.4310/jdg/1214428094.  Google Scholar

[25]

X. GráciaJ. Marin-Solano and M.-C. Muñoz-Lecanda, Some geometric aspects of variational calculus in constrained systems, Rep. Math. Phys., 51 (2003), 127-148.  doi: 10.1016/S0034-4877(03)80006-X.  Google Scholar

[26]

H. Grauert, On Levi's problem and the imbedding of real-analytic manifolds, Ann. of Math. (2), 68 (1958), 460-472.  doi: 10.2307/1970257.  Google Scholar

[27]

H. Grauert and R. Remmert, Coherent Analytic Sheaves, Grundlehren der Mathematischen Wissenschaften, 265, Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-642-69582-7.  Google Scholar

[28]

S. Jafarpour and A. D. Lewis, Time-Varying Vector Fields and Their Flows, SpringerBriefs in Mathematics, Springer, New York, 2014. doi: 10.1007/978-3-319-10139-2.  Google Scholar

[29]

J. Jost, Postmodern Analysis, Universitext, Springer-Verlag, Berlin, 2003. doi: 10.1007/978-3-662-05306-5.  Google Scholar

[30]

M. Jóźwikowski and W. Respondek, A comparison of vakonomic and nonholonomic dynamics with applications to non-invariant Chaplygin systems, J. Geom. Mech., 11 (2019), 77-122.  doi: 10.3934/jgm.2019005.  Google Scholar

[31]

P. V. Kharlomov, A critique of some mathematical models of mechanical systems with differential constraints, J. Appl. Math. Mech., 56 (1992), 584-594.  doi: 10.1016/0021-8928(92)90016-2.  Google Scholar

[32]

W. Klingenberg, Riemannian Geometry, de Gruyter Studies in Mathematics, 1, Walter de Gruyter & Co., Berlin/New York, 1982.  Google Scholar

[33]

S. Kobayashi and K. Nomizu, Foundations of Differential Geometry. Vol. I, Interscience Publishers, a division of John Wiley & Sons, New York-London, 1963.  Google Scholar

[34]

J. Koiller, Reduction of some classical nonholonomic systems with symmetry, Arch. Rational Mech. Anal., 118 (1992), 113-148.  doi: 10.1007/BF00375092.  Google Scholar

[35]

I. Kolář, P. W. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993. doi: 10.1007/978-3-662-02950-3.  Google Scholar

[36]

V. V. Kozlov, The problem of realizing constraints in dynamics, J. Appl. Math. Mech., 56 (1992), 594-600.  doi: 10.1016/0021-8928(92)90017-3.  Google Scholar

[37]

I. Kupka and W. M. Oliva, The non-holonomic mechanics, J. Differential Equations, 169 (2001), 169-189.  doi: 10.1006/jdeq.2000.3897.  Google Scholar

[38]

B. Langerok, A connection theoretic approach to sub-Riemannian geometry, J. Geom. Phys., 46 (2003), 203-230.  doi: 10.1016/S0393-0440(02)00026-8.  Google Scholar

[39]

J. M. Lee, Riemannian Manifolds, Graduate Texts in Mathematics, 176, Springer-Verlag, New York, 1997. doi: 10.1007/b98852.  Google Scholar

[40]

A. D. Lewis, Affine connections and distributions with applications to nonholonomic mechanics, Rep. Math. Phys., 42 (1998), 135-164.  doi: 10.1016/S0034-4877(98)80008-6.  Google Scholar

[41]

A. D. Lewis, Generalised Subbundles, Distributions, and Families of Vector Fields. A Comprehensive Review, Lecture Notes from ICMAT Summer School, Madrid, 2012. Available from: http://www.mast.queensu.ca/ andrew/notes/abstracts/2011a.html. Google Scholar

[42]

A. D. Lewis, The physical foundations of geometric mechanics, J. Geom. Mech., 9 (2017), 487-574.  doi: 10.3934/jgm.2017019.  Google Scholar

[43]

A. D. Lewis and R. M. Murray, Variational principles for constrained systems: Theory and experiment, Internat. J. Non-Linear Mech., 30 (1995), 793-815.  doi: 10.1016/0020-7462(95)00024-0.  Google Scholar

[44]

W. Liu and H. J. Sussmann, Abnormal sub-Riemannian minimizers, in Differential Equations, Dynamical Systems, and Control Science, Lecture Notes in Pure and Appl. Math., 152, Dekker, New York, 1994,705–716.  Google Scholar

[45]

P. W. Michor, Manifolds of Differentiable Mappings, Shiva Mathematics Series, 3, Shiva Publishing Ltd., Nantwich, 1980.  Google Scholar

[46]

E. Minguzzi, The equality of mixed partial derivatives under weak differentiability conditions, Real Anal. Exchange, 40 (2014/15), 81-97.  doi: 10.14321/realanalexch.40.1.0081.  Google Scholar

[47]

J. Nestruev, Smooth Manifolds and Observables, Graduate Texts in Mathematics, 220, Springer-Verlag, New York, 2003. doi: 10.1007/b98871.  Google Scholar

[48]

G. P. Paternain, Geodesic Flows, Progress in Mathematics, 180, Birkhäuser Boston, Inc., Boston, MA, 1999. doi: 10.1007/978-1-4612-1600-1.  Google Scholar

[49]

P. Petersen, Riemannian Geometry, Graduate Texts in Mathematics, 171, Springer, New York, 2006. doi: 10.1007/978-0-387-29403-2.  Google Scholar

[50]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, Matematicheskaya teoriya optimal' nykh protsessov, Gosudarstvennoe izdatelstvo fiziko-matematicheskoi literatury, Moscow, 1961. Google Scholar

[51]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Interscience Publishers John Wiley & Sons, Inc., New York-London, 1962.  Google Scholar

[52]

S. Ramanan, Global Calculus, Graduate Studies in Mathematics, 65, American Mathematical Society, Providence, RI, 2005.  Google Scholar

[53]

V. V. Rumiantsev, On Hamilton's principle for nonholonomic systems, Prikl. Mat. Mekh., 42 (1978), 387-399.   Google Scholar

[54]

S. Sasaki, On the differential geometry of tangent bundles of Riemannian manifolds, Tohoku Math. J. (2), 10 (1958), 338-354.  doi: 10.2748/tmj/1178244668.  Google Scholar

[55]

E. D. Sontag, Mathematical Control Theory. Deterministic Finite-Dimensional Systems, Texts in Applied Mathematics, 6, Springer-Verlag, New York, 1998. doi: 10.1007/978-1-4612-0577-7.  Google Scholar

[56]

H. J. Sussmann, Smooth distributions are globally finitely spanned, in Analysis and Design of Nonlinear Control Systems, Springer, Berlin, 2008, 3–8. doi: 10.1007/978-3-540-74358-3_1.  Google Scholar

[57]

J. L. Synge, Geodesics in non-holonomic geometry, Math. Ann., 99 (1928), 738-751.  doi: 10.1007/BF01459122.  Google Scholar

[58]

G. Terra, Vakonomic versus nonholonomic mechanics revisited, São Paulo J. Math. Sci., 12 (2018), 136-145.  doi: 10.1007/s40863-017-0062-z.  Google Scholar

[59]

G. Terra and M. H. Kobayashi, On the classical mechanical systems with non-linear constraints, J. Geom. Phys., 49 (2004), 385-417.  doi: 10.1016/j.geomphys.2003.08.005.  Google Scholar

[60]

G. Terra and M. H. Kobayashi, On the variational mechanics with non-linear constraints, J. Math. Pures Appl. (9), 83 (2004), 629-671.  doi: 10.1016/S0021-7824(03)00069-2.  Google Scholar

[61]

A. M. Vershik and V. Y. Gershkovich, Nonholonomic dynamical systems. Geometry of distributions and variational problems, in Current problems in mathematics. Fundamental directions, Vol. 16 (Russian), Itogi Nauki i Tekhniki, 307, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1987, 5–85.  Google Scholar

[62]

R. O. Wells Jr, Differential Analysis on Complex Manifolds, Graduate Texts in Mathematics, 65, Springer, New York, 2008. doi: 10.1007/978-0-387-73892-5.  Google Scholar

[63]

H. Whitney, Differentiable manifolds, Ann. of Math. (2), 37 (1936), 645-680.  doi: 10.2307/1968482.  Google Scholar

[64]

G. Zampieri, Nonholonomic versus vakonomic dynamics, J. Differential Equations, 163 (2000), 335-347.  doi: 10.1006/jdeq.1999.3727.  Google Scholar

[65]

W. P. Ziemer, Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation, Graduate Texts in Mathematics, 120, Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4612-1015-3.  Google Scholar

Figure 1.  A depiction of $ \nu\hat{{\sigma}} $ and $ \delta\hat{{\sigma}} $. Note that $ \nu\hat{{\sigma}}_s $ is the tangent vector field for $ \hat{{\sigma}}_s $ and $ \delta\hat{{\sigma}}^t $ is the tangent vector field for $ \hat{{\sigma}}^t $
[1]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

[2]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[3]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[4]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[5]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

[6]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[7]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[8]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[9]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[10]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[11]

Buddhadev Pal, Pankaj Kumar. A family of multiply warped product semi-Riemannian Einstein metrics. Journal of Geometric Mechanics, 2020, 12 (4) : 553-562. doi: 10.3934/jgm.2020017

[12]

Giulia Cavagnari, Antonio Marigonda. Attainability property for a probabilistic target in wasserstein spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 777-812. doi: 10.3934/dcds.2020300

[13]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[14]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[15]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[16]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[17]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[18]

Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327

[19]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[20]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (118)
  • HTML views (169)
  • Cited by (0)

Other articles
by authors

[Back to Top]