June  2020, 12(2): 309-321. doi: 10.3934/jgm.2020014

A note on Hybrid Routh reduction for time-dependent Lagrangian systems

1. 

Instituto de Ciencias Matemáticas, Consejo Superior de Investigaciones Científicas, Calle Nicolás Cabrera 13-15, Cantoblanco, 28049, Madrid, Spain

2. 

Department of Mathematics, Universidad Nacional de La Plata, Calle 1 y 115, La Plata 1900, Buenos Aires, Argentina

3. 

Departamento de Matemática, Universidad Nacional del Sur, Av. Alem, 1253, 8000 Bahía Blanca, Argentina

Communicated by Manuel de León

Received  December 2019 Revised  March 2020 Published  June 2020

Fund Project: L. Colombo was partially supported by I-Link Project (Ref: linkA20079) from CSIC, Ministerio de Economia, Industria y Competitividad (MINEICO, Spain) under grant MTM2016- 76702-P; "Severo Ochoa Programme for Centres of Excellence" in R & D (SEV-2015-0554). The project that gave rise to these results received the support of a fellowship from "La Caixa" Foundation (ID 100010434). M.E. Eyrea Irazú was partially supported by CONICET Argentina

This note discusses Routh reduction for hybrid time-dependent mechanical systems. We give general conditions on whether it is possible to reduce by symmetries a hybrid time-dependent Lagrangian system extending and unifying previous results for continuous-time systems. We illustrate the applicability of the method using the example of a billiard with moving walls.

Citation: Leonardo J. Colombo, María Emma Eyrea Irazú, Eduardo García-Toraño Andrés. A note on Hybrid Routh reduction for time-dependent Lagrangian systems. Journal of Geometric Mechanics, 2020, 12 (2) : 309-321. doi: 10.3934/jgm.2020014
References:
[1]

C. Albert, Le théorème de réduction de Marsden-Weinstein en géométrie cosymplectique et de contact, J. Geom. Phys., 6 (1989), 627-649.  doi: 10.1016/0393-0440(89)90029-6.  Google Scholar

[2]

A. Ames and S. Sastry, Hybrid cotangent bundle reduction of simple hybrid mechanical systems with symmetry, American Control Conference, Minneapolis, MN, 2006. doi: 10.1109/ACC.2006.1656622.  Google Scholar

[3]

A. Ames and S. Sastry, Hybrid Routhian reduction of Lagrangian hybrid systems, American Control Conference, Minneapolis, MN, 2006. doi: 10.1109/ACC.2006.1656621.  Google Scholar

[4]

A. Ames, R. Gregg and M. Spong, A geometric approach to three-dimensional hipped bipedal robotic walking, 46th IEEE Conference on Decision and Control, New Orleans, LA, 2007, 5123–5130. doi: 10.1109/CDC.2007.4434880.  Google Scholar

[5]

A. M. Bloch, Nonholonomic Mechanics and Control, Interdisciplinary Applied Mathematics, 24, Springer, New York, 2015. doi: 10.1007/978-1-4939-3017-3.  Google Scholar

[6]

A. Bloch, W. Clark and L. Colombo, Quasivelocities and symmetries in simple hybrid systems, IEEE 56th Annual Conference on Decision and Control (CDC), Melbourne, VIC, Australia, 2017, 1529–1534. doi: 10.1109/CDC.2017.8263869.  Google Scholar

[7]

L. J. Colombo and M. E. Eyrea Irazú, Symmetries and periodic orbits in simple hybrid Routhian systems, Nonlinear Anal. Hybrid Syst., 36 (2020), 14pp. doi: 10.1016/j.nahs.2020.100857.  Google Scholar

[8]

L. Colombo, W. Clark and A. Bloch, Time reversal symmetries and zero dynamics for simple hybrid Hamiltonian control systems, Annual American Control Conference (ACC), Milwaukee, WI, 2018, 2218–2223. doi: 10.23919/ACC.2018.8431672.  Google Scholar

[9]

J. CortésM. de LeónD. Martín de Diego and S. Martínez, Mechanical systems subjected to generalized non-holonomic constraints, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 651-670.  doi: 10.1098/rspa.2000.0686.  Google Scholar

[10]

M. Crampin and T. Mestdag, Routh's procedure for non-abelian symmetry groups, J. Math. Phys., 49 (2008), 28pp. doi: 10.1063/1.2885077.  Google Scholar

[11]

M. de León and M. Saralegi, Cosymplectic reduction for singular momentum maps, J. Phys. A, 26 (1993), 5033-5043.  doi: 10.1088/0305-4470/26/19/032.  Google Scholar

[12]

A. Echeverría EnríquezM. C. Muñoz Lecanda and N. Román-Roy, Geometrical setting of time-dependent regular systems. Alternative models, Rev. Math. Phys., 3 (1991), 301-330.  doi: 10.1142/S0129055X91000114.  Google Scholar

[13]

E. Eyrea Irazú, Geometric and Numerical Aspects of Mechanical Systems with Magnetic Terms, Ph.D. thesis, Universidad Nacional de La Plata, 2019. Google Scholar

[14]

K. Grabowska and P. Urbański, Geometry of Routh reduction, J. Geom. Mech., 11 (2019), 23-44.  doi: 10.3934/jgm.2019002.  Google Scholar

[15]

R. Gregg and M. Spong, Reduction-based control with application to three-dimensional bipedal walking robots, American Control Conference, Seattle, WA, 2008,880–887. doi: 10.1109/ACC.2008.4586604.  Google Scholar

[16]

A. IbortM. de LeónE. A. LacombaJ. C. MarreroD. M. de Diego and P. Pitanga, Geometric formulation of mechanical systems subjected to time-dependent one-sided constraints, J. Phys. A, 31 (1998), 2655-2674.  doi: 10.1088/0305-4470/31/11/014.  Google Scholar

[17]

E. A. Lacomba and W. M. Tulczyjew, Geometric formulation of mechanical systems with one-sided constraints, J. Phys. A, 23 (1990), 2801-2813.  doi: 10.1088/0305-4470/23/13/019.  Google Scholar

[18]

B. Langerock, F. Cantrijn and J. Vankerschaver, Routhian reduction for quasi-invariant Lagrangians, J. Math. Phys., 51 (2010), 20pp. doi: 10.1063/1.3277181.  Google Scholar

[19]

B. Langerock, E. García-Toraño Andrés and F. Cantrijn, Routh reduction and the class of magnetic Lagrangian systems, J. Math. Phys., 53 (2012), 19pp. doi: 10.1063/1.4723841.  Google Scholar

[20]

B. Langerock, T. Mestdag and J. Vankerschaver, Routh reduction by stages, SIGMA Symmetry Integrability Geom. Methods Appl., 7 (2011), 31pp. doi: 10.3842/SIGMA.2011.109.  Google Scholar

[21]

J. E. Marsden, G. Misioƚek, J.-P. Ortega, M. Perlmutter and T. S. Ratiu, Hamiltonian Reduction by Stages, Lecture Notes in Mathematics, 1913, Springer, Berlin, 2007. doi: 10.1007/978-3-540-72470-4.  Google Scholar

[22]

J. Marsden and A. Weinstein, Reduction of symplectic manifolds with symmetry, Rep. Mathematical Phys., 5 (1974), 121-130.  doi: 10.1016/0034-4877(74)90021-4.  Google Scholar

[23]

L. A. Pars, A Treatise on Analytical Dynamics, John Wiley & Sons, Inc., New York, 1965.  Google Scholar

show all references

References:
[1]

C. Albert, Le théorème de réduction de Marsden-Weinstein en géométrie cosymplectique et de contact, J. Geom. Phys., 6 (1989), 627-649.  doi: 10.1016/0393-0440(89)90029-6.  Google Scholar

[2]

A. Ames and S. Sastry, Hybrid cotangent bundle reduction of simple hybrid mechanical systems with symmetry, American Control Conference, Minneapolis, MN, 2006. doi: 10.1109/ACC.2006.1656622.  Google Scholar

[3]

A. Ames and S. Sastry, Hybrid Routhian reduction of Lagrangian hybrid systems, American Control Conference, Minneapolis, MN, 2006. doi: 10.1109/ACC.2006.1656621.  Google Scholar

[4]

A. Ames, R. Gregg and M. Spong, A geometric approach to three-dimensional hipped bipedal robotic walking, 46th IEEE Conference on Decision and Control, New Orleans, LA, 2007, 5123–5130. doi: 10.1109/CDC.2007.4434880.  Google Scholar

[5]

A. M. Bloch, Nonholonomic Mechanics and Control, Interdisciplinary Applied Mathematics, 24, Springer, New York, 2015. doi: 10.1007/978-1-4939-3017-3.  Google Scholar

[6]

A. Bloch, W. Clark and L. Colombo, Quasivelocities and symmetries in simple hybrid systems, IEEE 56th Annual Conference on Decision and Control (CDC), Melbourne, VIC, Australia, 2017, 1529–1534. doi: 10.1109/CDC.2017.8263869.  Google Scholar

[7]

L. J. Colombo and M. E. Eyrea Irazú, Symmetries and periodic orbits in simple hybrid Routhian systems, Nonlinear Anal. Hybrid Syst., 36 (2020), 14pp. doi: 10.1016/j.nahs.2020.100857.  Google Scholar

[8]

L. Colombo, W. Clark and A. Bloch, Time reversal symmetries and zero dynamics for simple hybrid Hamiltonian control systems, Annual American Control Conference (ACC), Milwaukee, WI, 2018, 2218–2223. doi: 10.23919/ACC.2018.8431672.  Google Scholar

[9]

J. CortésM. de LeónD. Martín de Diego and S. Martínez, Mechanical systems subjected to generalized non-holonomic constraints, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 651-670.  doi: 10.1098/rspa.2000.0686.  Google Scholar

[10]

M. Crampin and T. Mestdag, Routh's procedure for non-abelian symmetry groups, J. Math. Phys., 49 (2008), 28pp. doi: 10.1063/1.2885077.  Google Scholar

[11]

M. de León and M. Saralegi, Cosymplectic reduction for singular momentum maps, J. Phys. A, 26 (1993), 5033-5043.  doi: 10.1088/0305-4470/26/19/032.  Google Scholar

[12]

A. Echeverría EnríquezM. C. Muñoz Lecanda and N. Román-Roy, Geometrical setting of time-dependent regular systems. Alternative models, Rev. Math. Phys., 3 (1991), 301-330.  doi: 10.1142/S0129055X91000114.  Google Scholar

[13]

E. Eyrea Irazú, Geometric and Numerical Aspects of Mechanical Systems with Magnetic Terms, Ph.D. thesis, Universidad Nacional de La Plata, 2019. Google Scholar

[14]

K. Grabowska and P. Urbański, Geometry of Routh reduction, J. Geom. Mech., 11 (2019), 23-44.  doi: 10.3934/jgm.2019002.  Google Scholar

[15]

R. Gregg and M. Spong, Reduction-based control with application to three-dimensional bipedal walking robots, American Control Conference, Seattle, WA, 2008,880–887. doi: 10.1109/ACC.2008.4586604.  Google Scholar

[16]

A. IbortM. de LeónE. A. LacombaJ. C. MarreroD. M. de Diego and P. Pitanga, Geometric formulation of mechanical systems subjected to time-dependent one-sided constraints, J. Phys. A, 31 (1998), 2655-2674.  doi: 10.1088/0305-4470/31/11/014.  Google Scholar

[17]

E. A. Lacomba and W. M. Tulczyjew, Geometric formulation of mechanical systems with one-sided constraints, J. Phys. A, 23 (1990), 2801-2813.  doi: 10.1088/0305-4470/23/13/019.  Google Scholar

[18]

B. Langerock, F. Cantrijn and J. Vankerschaver, Routhian reduction for quasi-invariant Lagrangians, J. Math. Phys., 51 (2010), 20pp. doi: 10.1063/1.3277181.  Google Scholar

[19]

B. Langerock, E. García-Toraño Andrés and F. Cantrijn, Routh reduction and the class of magnetic Lagrangian systems, J. Math. Phys., 53 (2012), 19pp. doi: 10.1063/1.4723841.  Google Scholar

[20]

B. Langerock, T. Mestdag and J. Vankerschaver, Routh reduction by stages, SIGMA Symmetry Integrability Geom. Methods Appl., 7 (2011), 31pp. doi: 10.3842/SIGMA.2011.109.  Google Scholar

[21]

J. E. Marsden, G. Misioƚek, J.-P. Ortega, M. Perlmutter and T. S. Ratiu, Hamiltonian Reduction by Stages, Lecture Notes in Mathematics, 1913, Springer, Berlin, 2007. doi: 10.1007/978-3-540-72470-4.  Google Scholar

[22]

J. Marsden and A. Weinstein, Reduction of symplectic manifolds with symmetry, Rep. Mathematical Phys., 5 (1974), 121-130.  doi: 10.1016/0034-4877(74)90021-4.  Google Scholar

[23]

L. A. Pars, A Treatise on Analytical Dynamics, John Wiley & Sons, Inc., New York, 1965.  Google Scholar

Figure 1.  A "billiard" with moving walls
Figure 2.  Simulation for $ c = 0.25 $. The figure in the left corresponds with the reduced trajectory while the figure to the right corresponds with the reconstructed solution
Figure 3.  Simulation for $ c = 0.10 $. he figure in the left corresponds with the reduced trajectory while the figure to the right corresponds with the reconstructed solution
[1]

Narciso Román-Roy. A summary on symmetries and conserved quantities of autonomous Hamiltonian systems. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020009

[2]

Sonomi Kakizaki, Akiko Fukuda, Yusaku Yamamoto, Masashi Iwasaki, Emiko Ishiwata, Yoshimasa Nakamura. Conserved quantities of the integrable discrete hungry systems. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 889-899. doi: 10.3934/dcdss.2015.8.889

[3]

Leonardo Colombo, David Martín de Diego. Optimal control of underactuated mechanical systems with symmetries. Conference Publications, 2013, 2013 (special) : 149-158. doi: 10.3934/proc.2013.2013.149

[4]

Leonardo Colombo, Fernando Jiménez, David Martín de Diego. Variational integrators for mechanical control systems with symmetries. Journal of Computational Dynamics, 2015, 2 (2) : 193-225. doi: 10.3934/jcd.2015003

[5]

Kathrin Flasskamp, Sebastian Hage-Packhäuser, Sina Ober-Blöbaum. Symmetry exploiting control of hybrid mechanical systems. Journal of Computational Dynamics, 2015, 2 (1) : 25-50. doi: 10.3934/jcd.2015.2.25

[6]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of discrete mechanical systems by stages. Journal of Geometric Mechanics, 2016, 8 (1) : 35-70. doi: 10.3934/jgm.2016.8.35

[7]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems. Journal of Geometric Mechanics, 2010, 2 (1) : 69-111. doi: 10.3934/jgm.2010.2.69

[8]

Long Wei, Zhijun Qiao, Yang Wang, Shouming Zhou. Conserved quantities, global existence and blow-up for a generalized CH equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1733-1748. doi: 10.3934/dcds.2017072

[9]

Henrique Bursztyn, Alejandro Cabrera. Symmetries and reduction of multiplicative 2-forms. Journal of Geometric Mechanics, 2012, 4 (2) : 111-127. doi: 10.3934/jgm.2012.4.111

[10]

Firdaus E. Udwadia, Thanapat Wanichanon. On general nonlinear constrained mechanical systems. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 425-443. doi: 10.3934/naco.2013.3.425

[11]

Leo T. Butler. A note on integrable mechanical systems on surfaces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1873-1878. doi: 10.3934/dcds.2014.34.1873

[12]

Jake Bouvrie, Boumediene Hamzi. Kernel methods for the approximation of some key quantities of nonlinear systems. Journal of Computational Dynamics, 2017, 4 (1&2) : 1-19. doi: 10.3934/jcd.2017001

[13]

Marin Kobilarov, Jerrold E. Marsden, Gaurav S. Sukhatme. Geometric discretization of nonholonomic systems with symmetries. Discrete & Continuous Dynamical Systems - S, 2010, 3 (1) : 61-84. doi: 10.3934/dcdss.2010.3.61

[14]

Manuel Falconi, E. A. Lacomba, C. Vidal. The flow of classical mechanical cubic potential systems. Discrete & Continuous Dynamical Systems - A, 2004, 11 (4) : 827-842. doi: 10.3934/dcds.2004.11.827

[15]

Franco Cardin, Alberto Lovison. Finite mechanical proxies for a class of reducible continuum systems. Networks & Heterogeneous Media, 2014, 9 (3) : 417-432. doi: 10.3934/nhm.2014.9.417

[16]

Anthony M. Bloch, Melvin Leok, Jerrold E. Marsden, Dmitry V. Zenkov. Controlled Lagrangians and stabilization of discrete mechanical systems. Discrete & Continuous Dynamical Systems - S, 2010, 3 (1) : 19-36. doi: 10.3934/dcdss.2010.3.19

[17]

Viviana Alejandra Díaz, David Martín de Diego. Generalized variational calculus for continuous and discrete mechanical systems. Journal of Geometric Mechanics, 2018, 10 (4) : 373-410. doi: 10.3934/jgm.2018014

[18]

Thomas I. Seidman, Olaf Klein. Periodic solutions of isotone hybrid systems. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 483-493. doi: 10.3934/dcdsb.2013.18.483

[19]

William Clark, Anthony Bloch, Leonardo Colombo. A Poincaré-Bendixson theorem for hybrid systems. Mathematical Control & Related Fields, 2020, 10 (1) : 27-45. doi: 10.3934/mcrf.2019028

[20]

Boris P. Belinskiy, Peter Caithamer. Stochastic stability of some mechanical systems with a multiplicative white noise. Conference Publications, 2003, 2003 (Special) : 91-99. doi: 10.3934/proc.2003.2003.91

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (41)
  • HTML views (64)
  • Cited by (0)

[Back to Top]