September  2020, 12(3): 343-361. doi: 10.3934/jgm.2020015

The method of averaging for Poisson connections on foliations and its applications

1. 

Departamento de Matemáticas, Universidad de Sonora, Blvd. Luis Encinas y Rosales, s/n, Col. Centro, C.P. 83000, Hermosillo, Son., México

2. 

Departamento de Física y Matemáticas, Universidad Autónoma de Ciudad Juárez, Av. del Charro no. 450 nte., Col. Partido Romero, C.P. 32310, Ciudad Juárez, Chihuahua, México

3. 

Instituto de Matemática e Estatística, Universidade Federal Fluminense, Rua Professor Marcos Waldemar de Freitas Reis, s/n, Niterói 24210-201, Río de Janeiro, Brasil

* Corresponding author: Misael Avendaño-Camacho

Received  September 2019 Revised  February 2020 Published  June 2020

Fund Project: The authors are supported by CONACYT grant CB2015 no. 258302. E. Velasco - Barreras was supported by FAPERJ grants E-26/202.411/2019 and E-26/202.412/2019

On a Poisson foliation equipped with a canonical and cotangential action of a compact Lie group, we describe the averaging method for Poisson connections. In this context, we generalize some previous results on Hannay-Berry connections for Hamiltonian and locally Hamiltonian actions on Poisson fiber bundles. Our main application of the averaging method for connections is the construction of invariant Dirac structures parametrized by the 2-cocycles of the de Rham-Casimir complex of the Poisson foliation.

Citation: Misael Avendaño-Camacho, Isaac Hasse-Armengol, Eduardo Velasco-Barreras, Yury Vorobiev. The method of averaging for Poisson connections on foliations and its applications. Journal of Geometric Mechanics, 2020, 12 (3) : 343-361. doi: 10.3934/jgm.2020015
References:
[1]

M. Avendaño-Camacho, J. A. Vallejo and Y. Vorobiev, Higher order corrections to adiabatic invariants of generalized slow-fast Hamiltonian systems, J. Math. Phys., 54 (2013), 15pp. doi: 10.1063/1.4817863.  Google Scholar

[2]

M. Avendaño-Camacho and Y. Vorobiev, Deformations of Poisson structures on fibered manifolds and adiabatic slow-fast systems, Int. J. Geom. Methods Mod. Phys., 14 (2017), 15pp. doi: 10.1142/S0219887817500864.  Google Scholar

[3]

O. Brahic and R. L. Fernandes, Integrability and reduction of Hamiltonian actions on Dirac manifolds, Indag. Math., 25 (2014), 901-925.  doi: 10.1016/j.indag.2014.07.007.  Google Scholar

[4]

O. Brahic and R. L. Fernandes, Poisson fibrations and fibered symplectic groupoids, in Poisson Geometry in Mathematics and Physics, Contemp. Math., 450, Amer. Math. Soc., Providence, RI, 2008, 41–59. doi: 10.1090/conm/450/08733.  Google Scholar

[5]

T. Courant and A. Weinstein, Beyond Poisson structures, in Action Hamiltoniennes de Groupes. Troisième Théorème de Lie, Travaux en Cours, 27, Hermann, Paris, 1988, 39–49.  Google Scholar

[6]

T. J. Courant, Dirac manifolds, Trans. Amer. Math. Soc., 319 (1990), 631-661.  doi: 10.1090/S0002-9947-1990-0998124-1.  Google Scholar

[7]

J.-P. Dufour and A. Wade, On the local structure of Dirac manifolds, Compos. Math., 144 (2008), 774-786.  doi: 10.1112/S0010437X07003272.  Google Scholar

[8]

V. L. Ginzburg, Momentum mappings and Poisson cohomology, Internat. J. Math., 7 (1996), 329-358.  doi: 10.1142/S0129167X96000207.  Google Scholar

[9]

V. L. Ginzburg, Equivariant Poisson cohomology and a spectral sequence associated with a moment map, Internat. J. Math., 10 (1999), 977-1010.  doi: 10.1142/S0129167X99000422.  Google Scholar

[10]

I. Kolář, P. W. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993. doi: 10.1007/978-3-662-02950-3.  Google Scholar

[11]

J.-H. Lu, Momentum mappings and reduction of Poisson actions, in Symplectic Geometry, Groupoids, and Integrable Systems, Math. Sci. Res. Inst. Publ., 20, Springer, New York, NY, 1991,209–226. doi: 10.1007/978-1-4613-9719-9_15.  Google Scholar

[12]

J. Marsden, R. Montgomery and T. Ratiu, Reduction, symmetry, and phases in mechanics, Mem. Amer. Math. Soc., 88 (1990). doi: 10.1090/memo/0436.  Google Scholar

[13]

R. Montgomery, The connection whose holonomy is the classical adiabatic angles of Hannay and Berry and its generalization to the non-integrable case, Commun. Math. Phys., 120 (1988), 269-294.  doi: 10.1007/BF01217966.  Google Scholar

[14]

A. PedrozaE. Velasco-Barreras and Y. Vorobiev, Unimodularity criteria for Poisson structures on foliated manifolds, Lett. Math. Phys., 108 (2018), 861-882.  doi: 10.1007/s11005-017-1014-3.  Google Scholar

[15]

M. R. Sepanski, Compact Lie Groups, Graduate Texts in Mathematics, 235, Springer, New York, 2007. doi: 10.1007/978-0-387-49158-5.  Google Scholar

[16]

P. Ševera and A. Weinstein, Poisson geometry with a 3-form background. Noncommutative geometry and string theory, Progr. Theoret. Phys. Suppl., 144 (2001), 145-154.  doi: 10.1143/PTPS.144.145.  Google Scholar

[17]

I. Vaisman, Lectures on the Geometry of Poisson Manifolds, Progress in Mathematics, 118, Birkhäuser Verlag, Basel, 1994. doi: 10.1007/978-3-0348-8495-2.  Google Scholar

[18]

I. Vaisman, Coupling Poisson and Jacobi structures on foliated manifolds, Int. J. Geom. Methods Mod. Phys., 1 (2004), 607-637.  doi: 10.1142/S0219887804000307.  Google Scholar

[19]

I. Vaisman, Foliation-coupling Dirac structures, J. Geom. Phys., 56 (2006), 917-938.  doi: 10.1016/j.geomphys.2005.05.007.  Google Scholar

[20]

J. A. Vallejo and Y. Vorobiev, Invariant Poisson realizations and the averaging of Dirac structures, SIGMA Symmetry Integrability Geom. Methods Appl., 10 (2014), 20pp. doi: 10.3842/SIGMA.2014.096.  Google Scholar

[21]

Y. Vorobjev, Coupling tensors and Poisson geometry near a single symplectic leaf, in Lie Algebroids and Related Topics in Differential Geometry, Banach Center Publ., 54, Polish Acad. Sci. Inst. Math., Warsaw, 2001,249–274. doi: 10.4064/bc54-0-14.  Google Scholar

[22]

A. Wade, Poisson fiber bundles and coupling Dirac structures, Ann. Global Anal. Geom., 3 (2008), 207-217.  doi: 10.1007/s10455-007-9079-3.  Google Scholar

[23]

M. Wüstner, A connected Lie group equals the square of the exponential image, J. Lie Theory, 13 (2003), 307-309.   Google Scholar

show all references

References:
[1]

M. Avendaño-Camacho, J. A. Vallejo and Y. Vorobiev, Higher order corrections to adiabatic invariants of generalized slow-fast Hamiltonian systems, J. Math. Phys., 54 (2013), 15pp. doi: 10.1063/1.4817863.  Google Scholar

[2]

M. Avendaño-Camacho and Y. Vorobiev, Deformations of Poisson structures on fibered manifolds and adiabatic slow-fast systems, Int. J. Geom. Methods Mod. Phys., 14 (2017), 15pp. doi: 10.1142/S0219887817500864.  Google Scholar

[3]

O. Brahic and R. L. Fernandes, Integrability and reduction of Hamiltonian actions on Dirac manifolds, Indag. Math., 25 (2014), 901-925.  doi: 10.1016/j.indag.2014.07.007.  Google Scholar

[4]

O. Brahic and R. L. Fernandes, Poisson fibrations and fibered symplectic groupoids, in Poisson Geometry in Mathematics and Physics, Contemp. Math., 450, Amer. Math. Soc., Providence, RI, 2008, 41–59. doi: 10.1090/conm/450/08733.  Google Scholar

[5]

T. Courant and A. Weinstein, Beyond Poisson structures, in Action Hamiltoniennes de Groupes. Troisième Théorème de Lie, Travaux en Cours, 27, Hermann, Paris, 1988, 39–49.  Google Scholar

[6]

T. J. Courant, Dirac manifolds, Trans. Amer. Math. Soc., 319 (1990), 631-661.  doi: 10.1090/S0002-9947-1990-0998124-1.  Google Scholar

[7]

J.-P. Dufour and A. Wade, On the local structure of Dirac manifolds, Compos. Math., 144 (2008), 774-786.  doi: 10.1112/S0010437X07003272.  Google Scholar

[8]

V. L. Ginzburg, Momentum mappings and Poisson cohomology, Internat. J. Math., 7 (1996), 329-358.  doi: 10.1142/S0129167X96000207.  Google Scholar

[9]

V. L. Ginzburg, Equivariant Poisson cohomology and a spectral sequence associated with a moment map, Internat. J. Math., 10 (1999), 977-1010.  doi: 10.1142/S0129167X99000422.  Google Scholar

[10]

I. Kolář, P. W. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993. doi: 10.1007/978-3-662-02950-3.  Google Scholar

[11]

J.-H. Lu, Momentum mappings and reduction of Poisson actions, in Symplectic Geometry, Groupoids, and Integrable Systems, Math. Sci. Res. Inst. Publ., 20, Springer, New York, NY, 1991,209–226. doi: 10.1007/978-1-4613-9719-9_15.  Google Scholar

[12]

J. Marsden, R. Montgomery and T. Ratiu, Reduction, symmetry, and phases in mechanics, Mem. Amer. Math. Soc., 88 (1990). doi: 10.1090/memo/0436.  Google Scholar

[13]

R. Montgomery, The connection whose holonomy is the classical adiabatic angles of Hannay and Berry and its generalization to the non-integrable case, Commun. Math. Phys., 120 (1988), 269-294.  doi: 10.1007/BF01217966.  Google Scholar

[14]

A. PedrozaE. Velasco-Barreras and Y. Vorobiev, Unimodularity criteria for Poisson structures on foliated manifolds, Lett. Math. Phys., 108 (2018), 861-882.  doi: 10.1007/s11005-017-1014-3.  Google Scholar

[15]

M. R. Sepanski, Compact Lie Groups, Graduate Texts in Mathematics, 235, Springer, New York, 2007. doi: 10.1007/978-0-387-49158-5.  Google Scholar

[16]

P. Ševera and A. Weinstein, Poisson geometry with a 3-form background. Noncommutative geometry and string theory, Progr. Theoret. Phys. Suppl., 144 (2001), 145-154.  doi: 10.1143/PTPS.144.145.  Google Scholar

[17]

I. Vaisman, Lectures on the Geometry of Poisson Manifolds, Progress in Mathematics, 118, Birkhäuser Verlag, Basel, 1994. doi: 10.1007/978-3-0348-8495-2.  Google Scholar

[18]

I. Vaisman, Coupling Poisson and Jacobi structures on foliated manifolds, Int. J. Geom. Methods Mod. Phys., 1 (2004), 607-637.  doi: 10.1142/S0219887804000307.  Google Scholar

[19]

I. Vaisman, Foliation-coupling Dirac structures, J. Geom. Phys., 56 (2006), 917-938.  doi: 10.1016/j.geomphys.2005.05.007.  Google Scholar

[20]

J. A. Vallejo and Y. Vorobiev, Invariant Poisson realizations and the averaging of Dirac structures, SIGMA Symmetry Integrability Geom. Methods Appl., 10 (2014), 20pp. doi: 10.3842/SIGMA.2014.096.  Google Scholar

[21]

Y. Vorobjev, Coupling tensors and Poisson geometry near a single symplectic leaf, in Lie Algebroids and Related Topics in Differential Geometry, Banach Center Publ., 54, Polish Acad. Sci. Inst. Math., Warsaw, 2001,249–274. doi: 10.4064/bc54-0-14.  Google Scholar

[22]

A. Wade, Poisson fiber bundles and coupling Dirac structures, Ann. Global Anal. Geom., 3 (2008), 207-217.  doi: 10.1007/s10455-007-9079-3.  Google Scholar

[23]

M. Wüstner, A connected Lie group equals the square of the exponential image, J. Lie Theory, 13 (2003), 307-309.   Google Scholar

[1]

Abderrazak Chrifi, Mostafa Abounouh, Hassan Al Moatassime. Galerkin method of weakly damped cubic nonlinear Schrödinger with Dirac impurity, and artificial boundary condition in a half-line. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021030

[2]

Christoforidou Amalia, Christian-Oliver Ewald. A lattice method for option evaluation with regime-switching asset correlation structure. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1729-1752. doi: 10.3934/jimo.2020042

[3]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[4]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

[5]

Zhenbing Gong, Yanping Chen, Wenyu Tao. Jump and variational inequalities for averaging operators with variable kernels. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021045

[6]

Dandan Cheng, Qian Hao, Zhiming Li. Scale pressure for amenable group actions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1091-1102. doi: 10.3934/cpaa.2021008

[7]

Yusi Fan, Chenrui Yao, Liangyun Chen. Structure of sympathetic Lie superalgebras. Electronic Research Archive, , () : -. doi: 10.3934/era.2021020

[8]

Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637

[9]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[10]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[11]

Zhimin Chen, Kaihui Liu, Xiuxiang Liu. Evaluating vaccination effectiveness of group-specific fractional-dose strategies. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021062

[12]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[13]

Zhang Chen, Xiliang Li, Bixiang Wang. Invariant measures of stochastic delay lattice systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3235-3269. doi: 10.3934/dcdsb.2020226

[14]

Clara Cufí-Cabré, Ernest Fontich. Differentiable invariant manifolds of nilpotent parabolic points. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021053

[15]

Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2891-2905. doi: 10.3934/dcds.2020390

[16]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[17]

Sandrine Anthoine, Jean-François Aujol, Yannick Boursier, Clothilde Mélot. Some proximal methods for Poisson intensity CBCT and PET. Inverse Problems & Imaging, 2012, 6 (4) : 565-598. doi: 10.3934/ipi.2012.6.565

[18]

Mingchao Zhao, You-Wei Wen, Michael Ng, Hongwei Li. A nonlocal low rank model for poisson noise removal. Inverse Problems & Imaging, 2021, 15 (3) : 519-537. doi: 10.3934/ipi.2021003

[19]

Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, 2021, 14 (2) : 211-255. doi: 10.3934/krm.2021003

[20]

Paul A. Glendinning, David J. W. Simpson. A constructive approach to robust chaos using invariant manifolds and expanding cones. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3367-3387. doi: 10.3934/dcds.2020409

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (121)
  • HTML views (224)
  • Cited by (0)

[Back to Top]