
-
Previous Article
Contact Hamiltonian and Lagrangian systems with nonholonomic constraints
- JGM Home
- This Issue
-
Next Article
On nomalized differentials on spectral curves associated with the sinh-gordon equation
A unifying approach for rolling symmetric spaces
1. | Wydziaƚ Matematyczno-Przyrodniczy, Uniwersytet Kardynaƚa Stefana Wy-szyńskie-go w Warszawie, ul. Dewajtis 5, 01-815 Warszawa, Poland |
2. | Department of Mathematics, University of Trás-os-Montes e Alto Douro (UTAD), 5001-801 Vila Real, Portugal, and, Institute of Systems and Robotics, University of Coimbra - Pólo II, 3030-290 Coimbra, Portugal |
3. | Department of Mathematics, University of Coimbra, 3001-501 Coimbra, Portugal, and, Institute of Systems and Robotics, University of Coimbra - Pólo II, 3030-290 Coimbra, Portugal |
The main goal of this paper is to present a unifying theory to describe the pure rolling motions of Riemannian symmetric spaces, which are submanifolds of Euclidean or pseudo-Euclidean spaces. Rolling motions provide interesting examples of nonholonomic systems and symmetric spaces appear associated to important applications. We make a connection between the structure of the kinematic equations of rolling and the natural decomposition of the Lie algebra associated to the symmetric space. This emphasises the relevance of Lie theory in the geometry of rolling manifolds and explains why many particular examples scattered through the existing literature always show a common pattern.
References:
[1] |
A. A. Agrachev and Y. L. Sachkov, Control Theory from the Geometric Viewpoint, Encyclopaedia of Mathematical Sciences, 87, Springer-Verlag, Berlin, 2004.
doi: 10.1007/978-3-662-06404-7. |
[2] |
A. M. Bloch, Nonholonomic Mechanics and Control, Interdisciplinary Applied Mathematics, 24, Springer-Verlag, New York, 2003.
doi: 10.1115/1.1641775. |
[3] |
A. M. Bloch, R. W. Brockett and P. E. Crouch,
Double bracket equations and geodesic flows on symmetric spaces, Comm. Math. Phys., 187 (1997), 357-373.
doi: 10.1007/s002200050140. |
[4] |
A. M. Bloch, M. Camarinha and L. Colombo, Variational point-obstacle avoidance on Riemannian manifolds, preprint, arXiv: 1909.12321[eess.SY]. Google Scholar |
[5] |
A. M. Bloch and P. E. Crouch, Optimal control, optimization, and analytical mechanics, in Mathematical Control Theory, Springer, New York, 1999,268–321.
doi: 10.1007/978-1-4612-1416-8_8. |
[6] |
A. M. Bloch, P. E. Crouch and T. S. Ratiu, Sub-Riemannian optimal control problems, in Hamiltonian and Gradient Flows, Algorithms and Control, Fields Inst. Commun., 3, Amer. Math. Soc., Providence, RI, 1994, 35–48. |
[7] |
A. M. Bloch and A. G. Rojo,
Kinematics of the rolling sphere and quantum spin, Commun. Inf. Syst., 10 (2010), 221-238.
doi: 10.4310/CIS.2010.v10.n4.a4. |
[8] |
R. L. Bryant and L. Hsu,
Rigidity of integral curves of rank 2 distributions, Invent. Math., 114 (1993), 435-461.
doi: 10.1007/BF01232676. |
[9] |
F. Bullo and A. D. Lewis, Geometric Control of Mechanical Systems. Modeling, Analysis, and Design for Simple Mechanical Control Systems, Texts in Applied Mathematics, 49, Springer-Verlag, New York, 2005.
doi: 10.1007/978-1-4899-7276-7. |
[10] |
G. S. Chirikjian, Information theory on Lie groups and mobile robotics applications, IEEE International Conference on Robotics and Automation, Anchorage, AK, 2010, 2751–2757.
doi: 10.1109/ROBOT.2010.5509791. |
[11] |
Y. Chitour, M. Godoy Molina and P. Kokkonen, The rolling problem: overview and challenges, in Geometric Control Theory and Sub-Riemannian Geometry, Springer INdAM Ser., 5, Springer, Cham, 2014,103–122.
doi: 10.1007/978-3-319-02132-4_7. |
[12] |
Y. Chitour and P. Kokkonen,
Rolling manifolds on space forms, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012), 927-954.
doi: 10.1016/j.anihpc.2012.05.005. |
[13] |
P. E. Crouch and F. Silva Leite, Rolling motions of pseudo-orthogonal groups, IEEE 51st Annual Conference on Decision and Control (CDC), Maui, HI, 2012, 7485–7491.
doi: 10.1109/CDC.2012.6426140. |
[14] |
M. P. do Carmo, Riemannian Geometry, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 1992. |
[15] |
J.-H. Eschenburg and E. Heintze,
Extrinsic symmetric spaces and orbits of $s$-representations, Manuscripta Math., 88 (1995), 517-524.
doi: 10.1007/BF02567838. |
[16] |
D. Ferus,
Immersions with parallel second fundamental form, Math. Z., 140 (1974), 87-93.
doi: 10.1007/BF01218650. |
[17] |
M. Godoy Molina, E. Grong, I. Markina and F. Silva Leite,
An intrinsic formulation of the problem on rolling manifolds, J. Dyn. Control Syst., 18 (2012), 181-214.
doi: 10.1007/s10883-012-9139-2. |
[18] |
M. Harandi, R. Hartley, C. Shen, B. Lovell and C. Sanderson,
Extrinsic methods for coding and dictionary learning on Grassmann manifolds, Int. J. Comput. Vis., 114 (2015), 113-136.
doi: 10.1007/s11263-015-0833-x. |
[19] |
R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge University Press, Cambridge, 2003.
doi: 10.1017/CBO9780511811685.![]() ![]() |
[20] |
S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Pure and Applied Mathematics, 80, Academic Press, Inc., New York-London, 1978.
![]() |
[21] |
S. Helgason,
On Riemannian curvature of homogeneous spaces, Proc. Amer. Math. Soc., 9 (1958), 831-838.
doi: 10.1090/S0002-9939-1958-0108811-2. |
[22] |
Z. Huang, R. Wang, S. Shan and X. Chen, Projection metric learning on Grassmann manifold with application to video based face recognition, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, 2015,140–149.
doi: 10.1109/CVPR.2015.7298609. |
[23] |
K. Hüper, K. A. Krakowski and F. Silva Leite, Rolling maps in a Riemannian framework, in Mathematical Papers in Honour of Fátima Silva Leite, Textos Mat. Sér. B, 43, Univ. Coimbra, Coimbra, 2011, 15–30. |
[24] |
K. Hüper and F. Silva Leite,
On the geometry of rolling and interpolation curves on $S^n$, $SO_n$ and Graßmann manifolds, J. Dyn. Control Syst., 13 (2007), 467-502.
doi: 10.1007/s10883-007-9027-3. |
[25] |
V. Jurdjevic and J. Zimmerman, Rolling problems on spaces of constant curvature, in Lagrangian and Hamiltonian Methods for Nonlinear Control, Lect. Notes Control Inf. Sci., 366, Springer, Berlin, 2007,221–231.
doi: 10.1007/978-3-540-73890-9_17. |
[26] |
V. Jurdjevic and J. Zimmerman,
Rolling sphere problems on spaces of constant curvature, Math. Proc. Cambridge Philos. Soc., 144 (2008), 729-747.
doi: 10.1017/S0305004108001084. |
[27] |
S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Interscience Tracts in Pure and Applied Mathematics, 1, Interscience Publishers John Wiley & Sons, Inc.,, New York-London, 1963. |
[28] |
S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Interscience Tracts in Pure and Applied Mathematics, 2, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1969. |
[29] |
A. Korolko and F. Silva Leite, Kinematics for rolling a Lorentzian sphere, 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, FL, 2011.
doi: 10.1109/CDC.2011.6160592. |
[30] |
O. Kowalski, Generalized Symmetric Spaces, Lecture Notes in Mathematics, 805, Springer-Verlag, Berlin-New York, 1980.
doi: 10.1007/BFb0103324. |
[31] |
K. A. Krakowski, L. Machado and F. Silva Leite, Rolling symmetric spaces, in Geometric Science of Information, Lecture Notes in Comput. Sci., 9389, Springer, Cham, 2015,550–557.
doi: 10.1007/978-3-319-25040-3_59. |
[32] |
K. A. Krakowski and F. Silva Leite,
An algorithm based on rolling to generate smooth interpolating curves on ellipsoids, Kybernetika, 50 (2014), 544-562.
doi: 10.14736/kyb-2014-4-0544. |
[33] |
J. M. Lee, Riemannian Manifolds. An Introduction to Curvature, Graduate Texts in Mathematics, 176, Springer-Verlag, New York, 1997.
doi: 10.1007/b98852. |
[34] | K. Lynch and F. Park, Modern Robotics - Mechanics, Planning, and Control, Cambridge University Press, New York, 2017. Google Scholar |
[35] |
L. Machado, F. Pina and F. Silva Leite, Rolling maps for the essential manifold, in Dynamics, Games and Science, CIM Ser. Math. Sci., 1, Springer, Cham, 2015,399–415.
doi: 10.1007/978-3-319-16118-1_21. |
[36] |
M. A. Magid,
Isometric immersions of Lorentz space with parallel second fundamental forms, Tsukuba J. Math, 8 (1984), 31-54.
doi: 10.21099/tkbjm/1496159942. |
[37] |
I. Markina and F. Silva Leite,
Introduction to the intrinsic rolling with indefinite metric, Comm. Anal. Geom., 24 (2016), 1085-1106.
doi: 10.4310/CAG.2016.v24.n5.a7. |
[38] |
A. Marques and F. Silva Leite, Controllability for the constrained rolling motion of symplectic groups, in Proc. of the 11th Portuguese Conference on Automatic Control, Lecture Notes in Electrical Engineering, 321, Springer, Cham, 2015, 3–12.
doi: 10.1007/978-3-319-10380-8_1. |
[39] |
R. N. Murray, Z. X. Li and S. S. Sastry, A Mathematical Introduction to Robotic Manipulation, CRC Press, Boca Raton, FL, 1994.
![]() |
[40] |
K. Nomizu,
Kinematics and differential geometry of submanifolds. Rolling a ball with a prescribed locus of contact, Tohoku Math. J. (2), 30 (1978), 623-637.
doi: 10.2748/tmj/1178229921. |
[41] |
B. O'Neill, Elementary Differential Geometry, Academic Press, New York-London, 1966.
![]() |
[42] |
X. Pennec, S. Sommer and P. T. Fletcher, Riemannian Geometric Statistics in Medical Image Analysis, Academic Press, 2020.
doi: 10.1016/C2017-0-01561-6.![]() |
[43] |
A. G. Rojo and A. M. Bloch,
The rolling sphere, the quantum spin, and a simple view of the Landau-Zener problem, American J. Physics, 78 (2010), 1014-1022.
doi: 10.1119/1.3456565. |
[44] |
R. W. Sharpe, Differential Geometry. Cartan's Generalization of Klein's Erlangen Program, Graduate Texts in Mathematics, 166, Springer-Verlag, New York, 1997. |
[45] |
M. Takeuchi and S. Kobayashi,
Minimal imbeddings of ${R}$-spaces, J. Differential Geometry, 2 (1968), 203-215.
doi: 10.4310/jdg/1214428257. |
[46] |
R. Tron and K. Daniilidis,
The space of essential matrices as a Riemannian quotient manifold, SIAM J. Imaging Sci., 10 (2017), 1416-1445.
doi: 10.1137/16M1091332. |
[47] |
P. Turaga and R. Chellappa, Locally time-invariant models of human activities using trajectories on the Grassmannian, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Miami, FL, 2009, 2435–2441.
doi: 10.1109/CVPR.2009.5206710. |
[48] |
P. Turaga, A. Veeraraghavan, A. Srivastava and R. Chellappa,
Statistical computations on Grassmann and Stiefel manifolds for image and video-based recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, 33 (2011), 2273-2286.
doi: 10.1109/TPAMI.2011.52. |
[49] |
R. Vemulapalli and R. Chellappa, Rolling rotations for recognizing human actions from 3d skeletal data, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, 2016, 4471–4479.
doi: 10.1109/CVPR.2016.484. |
[50] |
L. Vrancken, Parallel affine immersions with maximal codimension, Tohoku Math. J. (2), 53, Number 4 (2001), 511–531. |
[51] |
J. Zhang, G. Zhu, R. Heath Jr. and K. Huang, Grassmannian learning: Embedding geometry awareness in shallow and deep learning, preprint, arXiv: 1808.02229[cs.LG]. Google Scholar |
[52] |
J. A. Zimmerman,
Optimal control of the sphere ${S^n}$ rolling on ${E^n}$, Math. Control Signals Systems, 17 (2005), 14-37.
doi: 10.1007/s00498-004-0143-2. |
show all references
References:
[1] |
A. A. Agrachev and Y. L. Sachkov, Control Theory from the Geometric Viewpoint, Encyclopaedia of Mathematical Sciences, 87, Springer-Verlag, Berlin, 2004.
doi: 10.1007/978-3-662-06404-7. |
[2] |
A. M. Bloch, Nonholonomic Mechanics and Control, Interdisciplinary Applied Mathematics, 24, Springer-Verlag, New York, 2003.
doi: 10.1115/1.1641775. |
[3] |
A. M. Bloch, R. W. Brockett and P. E. Crouch,
Double bracket equations and geodesic flows on symmetric spaces, Comm. Math. Phys., 187 (1997), 357-373.
doi: 10.1007/s002200050140. |
[4] |
A. M. Bloch, M. Camarinha and L. Colombo, Variational point-obstacle avoidance on Riemannian manifolds, preprint, arXiv: 1909.12321[eess.SY]. Google Scholar |
[5] |
A. M. Bloch and P. E. Crouch, Optimal control, optimization, and analytical mechanics, in Mathematical Control Theory, Springer, New York, 1999,268–321.
doi: 10.1007/978-1-4612-1416-8_8. |
[6] |
A. M. Bloch, P. E. Crouch and T. S. Ratiu, Sub-Riemannian optimal control problems, in Hamiltonian and Gradient Flows, Algorithms and Control, Fields Inst. Commun., 3, Amer. Math. Soc., Providence, RI, 1994, 35–48. |
[7] |
A. M. Bloch and A. G. Rojo,
Kinematics of the rolling sphere and quantum spin, Commun. Inf. Syst., 10 (2010), 221-238.
doi: 10.4310/CIS.2010.v10.n4.a4. |
[8] |
R. L. Bryant and L. Hsu,
Rigidity of integral curves of rank 2 distributions, Invent. Math., 114 (1993), 435-461.
doi: 10.1007/BF01232676. |
[9] |
F. Bullo and A. D. Lewis, Geometric Control of Mechanical Systems. Modeling, Analysis, and Design for Simple Mechanical Control Systems, Texts in Applied Mathematics, 49, Springer-Verlag, New York, 2005.
doi: 10.1007/978-1-4899-7276-7. |
[10] |
G. S. Chirikjian, Information theory on Lie groups and mobile robotics applications, IEEE International Conference on Robotics and Automation, Anchorage, AK, 2010, 2751–2757.
doi: 10.1109/ROBOT.2010.5509791. |
[11] |
Y. Chitour, M. Godoy Molina and P. Kokkonen, The rolling problem: overview and challenges, in Geometric Control Theory and Sub-Riemannian Geometry, Springer INdAM Ser., 5, Springer, Cham, 2014,103–122.
doi: 10.1007/978-3-319-02132-4_7. |
[12] |
Y. Chitour and P. Kokkonen,
Rolling manifolds on space forms, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012), 927-954.
doi: 10.1016/j.anihpc.2012.05.005. |
[13] |
P. E. Crouch and F. Silva Leite, Rolling motions of pseudo-orthogonal groups, IEEE 51st Annual Conference on Decision and Control (CDC), Maui, HI, 2012, 7485–7491.
doi: 10.1109/CDC.2012.6426140. |
[14] |
M. P. do Carmo, Riemannian Geometry, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 1992. |
[15] |
J.-H. Eschenburg and E. Heintze,
Extrinsic symmetric spaces and orbits of $s$-representations, Manuscripta Math., 88 (1995), 517-524.
doi: 10.1007/BF02567838. |
[16] |
D. Ferus,
Immersions with parallel second fundamental form, Math. Z., 140 (1974), 87-93.
doi: 10.1007/BF01218650. |
[17] |
M. Godoy Molina, E. Grong, I. Markina and F. Silva Leite,
An intrinsic formulation of the problem on rolling manifolds, J. Dyn. Control Syst., 18 (2012), 181-214.
doi: 10.1007/s10883-012-9139-2. |
[18] |
M. Harandi, R. Hartley, C. Shen, B. Lovell and C. Sanderson,
Extrinsic methods for coding and dictionary learning on Grassmann manifolds, Int. J. Comput. Vis., 114 (2015), 113-136.
doi: 10.1007/s11263-015-0833-x. |
[19] |
R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge University Press, Cambridge, 2003.
doi: 10.1017/CBO9780511811685.![]() ![]() |
[20] |
S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Pure and Applied Mathematics, 80, Academic Press, Inc., New York-London, 1978.
![]() |
[21] |
S. Helgason,
On Riemannian curvature of homogeneous spaces, Proc. Amer. Math. Soc., 9 (1958), 831-838.
doi: 10.1090/S0002-9939-1958-0108811-2. |
[22] |
Z. Huang, R. Wang, S. Shan and X. Chen, Projection metric learning on Grassmann manifold with application to video based face recognition, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, 2015,140–149.
doi: 10.1109/CVPR.2015.7298609. |
[23] |
K. Hüper, K. A. Krakowski and F. Silva Leite, Rolling maps in a Riemannian framework, in Mathematical Papers in Honour of Fátima Silva Leite, Textos Mat. Sér. B, 43, Univ. Coimbra, Coimbra, 2011, 15–30. |
[24] |
K. Hüper and F. Silva Leite,
On the geometry of rolling and interpolation curves on $S^n$, $SO_n$ and Graßmann manifolds, J. Dyn. Control Syst., 13 (2007), 467-502.
doi: 10.1007/s10883-007-9027-3. |
[25] |
V. Jurdjevic and J. Zimmerman, Rolling problems on spaces of constant curvature, in Lagrangian and Hamiltonian Methods for Nonlinear Control, Lect. Notes Control Inf. Sci., 366, Springer, Berlin, 2007,221–231.
doi: 10.1007/978-3-540-73890-9_17. |
[26] |
V. Jurdjevic and J. Zimmerman,
Rolling sphere problems on spaces of constant curvature, Math. Proc. Cambridge Philos. Soc., 144 (2008), 729-747.
doi: 10.1017/S0305004108001084. |
[27] |
S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Interscience Tracts in Pure and Applied Mathematics, 1, Interscience Publishers John Wiley & Sons, Inc.,, New York-London, 1963. |
[28] |
S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Interscience Tracts in Pure and Applied Mathematics, 2, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1969. |
[29] |
A. Korolko and F. Silva Leite, Kinematics for rolling a Lorentzian sphere, 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, FL, 2011.
doi: 10.1109/CDC.2011.6160592. |
[30] |
O. Kowalski, Generalized Symmetric Spaces, Lecture Notes in Mathematics, 805, Springer-Verlag, Berlin-New York, 1980.
doi: 10.1007/BFb0103324. |
[31] |
K. A. Krakowski, L. Machado and F. Silva Leite, Rolling symmetric spaces, in Geometric Science of Information, Lecture Notes in Comput. Sci., 9389, Springer, Cham, 2015,550–557.
doi: 10.1007/978-3-319-25040-3_59. |
[32] |
K. A. Krakowski and F. Silva Leite,
An algorithm based on rolling to generate smooth interpolating curves on ellipsoids, Kybernetika, 50 (2014), 544-562.
doi: 10.14736/kyb-2014-4-0544. |
[33] |
J. M. Lee, Riemannian Manifolds. An Introduction to Curvature, Graduate Texts in Mathematics, 176, Springer-Verlag, New York, 1997.
doi: 10.1007/b98852. |
[34] | K. Lynch and F. Park, Modern Robotics - Mechanics, Planning, and Control, Cambridge University Press, New York, 2017. Google Scholar |
[35] |
L. Machado, F. Pina and F. Silva Leite, Rolling maps for the essential manifold, in Dynamics, Games and Science, CIM Ser. Math. Sci., 1, Springer, Cham, 2015,399–415.
doi: 10.1007/978-3-319-16118-1_21. |
[36] |
M. A. Magid,
Isometric immersions of Lorentz space with parallel second fundamental forms, Tsukuba J. Math, 8 (1984), 31-54.
doi: 10.21099/tkbjm/1496159942. |
[37] |
I. Markina and F. Silva Leite,
Introduction to the intrinsic rolling with indefinite metric, Comm. Anal. Geom., 24 (2016), 1085-1106.
doi: 10.4310/CAG.2016.v24.n5.a7. |
[38] |
A. Marques and F. Silva Leite, Controllability for the constrained rolling motion of symplectic groups, in Proc. of the 11th Portuguese Conference on Automatic Control, Lecture Notes in Electrical Engineering, 321, Springer, Cham, 2015, 3–12.
doi: 10.1007/978-3-319-10380-8_1. |
[39] |
R. N. Murray, Z. X. Li and S. S. Sastry, A Mathematical Introduction to Robotic Manipulation, CRC Press, Boca Raton, FL, 1994.
![]() |
[40] |
K. Nomizu,
Kinematics and differential geometry of submanifolds. Rolling a ball with a prescribed locus of contact, Tohoku Math. J. (2), 30 (1978), 623-637.
doi: 10.2748/tmj/1178229921. |
[41] |
B. O'Neill, Elementary Differential Geometry, Academic Press, New York-London, 1966.
![]() |
[42] |
X. Pennec, S. Sommer and P. T. Fletcher, Riemannian Geometric Statistics in Medical Image Analysis, Academic Press, 2020.
doi: 10.1016/C2017-0-01561-6.![]() |
[43] |
A. G. Rojo and A. M. Bloch,
The rolling sphere, the quantum spin, and a simple view of the Landau-Zener problem, American J. Physics, 78 (2010), 1014-1022.
doi: 10.1119/1.3456565. |
[44] |
R. W. Sharpe, Differential Geometry. Cartan's Generalization of Klein's Erlangen Program, Graduate Texts in Mathematics, 166, Springer-Verlag, New York, 1997. |
[45] |
M. Takeuchi and S. Kobayashi,
Minimal imbeddings of ${R}$-spaces, J. Differential Geometry, 2 (1968), 203-215.
doi: 10.4310/jdg/1214428257. |
[46] |
R. Tron and K. Daniilidis,
The space of essential matrices as a Riemannian quotient manifold, SIAM J. Imaging Sci., 10 (2017), 1416-1445.
doi: 10.1137/16M1091332. |
[47] |
P. Turaga and R. Chellappa, Locally time-invariant models of human activities using trajectories on the Grassmannian, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Miami, FL, 2009, 2435–2441.
doi: 10.1109/CVPR.2009.5206710. |
[48] |
P. Turaga, A. Veeraraghavan, A. Srivastava and R. Chellappa,
Statistical computations on Grassmann and Stiefel manifolds for image and video-based recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, 33 (2011), 2273-2286.
doi: 10.1109/TPAMI.2011.52. |
[49] |
R. Vemulapalli and R. Chellappa, Rolling rotations for recognizing human actions from 3d skeletal data, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, 2016, 4471–4479.
doi: 10.1109/CVPR.2016.484. |
[50] |
L. Vrancken, Parallel affine immersions with maximal codimension, Tohoku Math. J. (2), 53, Number 4 (2001), 511–531. |
[51] |
J. Zhang, G. Zhu, R. Heath Jr. and K. Huang, Grassmannian learning: Embedding geometry awareness in shallow and deep learning, preprint, arXiv: 1808.02229[cs.LG]. Google Scholar |
[52] |
J. A. Zimmerman,
Optimal control of the sphere ${S^n}$ rolling on ${E^n}$, Math. Control Signals Systems, 17 (2005), 14-37.
doi: 10.1007/s00498-004-0143-2. |



[1] |
F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605 |
[2] |
Stephen Doty and Anthony Giaquinto. Generators and relations for Schur algebras. Electronic Research Announcements, 2001, 7: 54-62. |
[3] |
David Cantala, Juan Sebastián Pereyra. Endogenous budget constraints in the assignment game. Journal of Dynamics & Games, 2015, 2 (3&4) : 207-225. doi: 10.3934/jdg.2015002 |
[4] |
Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141 |
[5] |
Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329 |
[6] |
M. R. S. Kulenović, J. Marcotte, O. Merino. Properties of basins of attraction for planar discrete cooperative maps. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2721-2737. doi: 10.3934/dcdsb.2020202 |
[7] |
Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1 |
[8] |
Jérôme Ducoat, Frédérique Oggier. On skew polynomial codes and lattices from quotients of cyclic division algebras. Advances in Mathematics of Communications, 2016, 10 (1) : 79-94. doi: 10.3934/amc.2016.10.79 |
[9] |
Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363 |
[10] |
Vakhtang Putkaradze, Stuart Rogers. Numerical simulations of a rolling ball robot actuated by internal point masses. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 143-207. doi: 10.3934/naco.2020021 |
[11] |
Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243 |
[12] |
Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597 |
[13] |
Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017 |
[14] |
Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397 |
[15] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[16] |
Longxiang Fang, Narayanaswamy Balakrishnan, Wenyu Huang. Stochastic comparisons of parallel systems with scale proportional hazards components equipped with starting devices. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021004 |
[17] |
Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069 |
[18] |
Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119 |
[19] |
Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065 |
[20] |
Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055 |
2019 Impact Factor: 0.649
Tools
Metrics
Other articles
by authors
[Back to Top]