December  2020, 12(4): 553-562. doi: 10.3934/jgm.2020017

A family of multiply warped product semi-Riemannian Einstein metrics

1. 

Department of Mathematics, Institute of Science, Banaras Hindu University, Varanasi-221005, India

* Corresponding author: Buddhadev Pal

Received  January 2020 Revised  June 2020 Published  July 2020

Fund Project: The Second author is supported by UGC JRF of India, Ref. No: 1269/(SC)(CSIR-UGC NET DEC. 2016)

In this paper, we characterize multiply warped product semi -Riemannian manifolds when the base is conformal to an $ n $-dimensional pseudo-Euclidean space. We prove some conditions on warped product semi- Riemannian manifolds to be an Einstein manifold which is invariant under the action of an $ (n-1) $-dimensional translation group. After that we apply this result for the case of Ricci-flat multiply warped product space when the fibers are Ricci-flat. We also discuss the existence of infinitely many Ricci-flat multiply warped product spaces under the same action with null like vector.

Citation: Buddhadev Pal, Pankaj Kumar. A family of multiply warped product semi-Riemannian Einstein metrics. Journal of Geometric Mechanics, 2020, 12 (4) : 553-562. doi: 10.3934/jgm.2020017
References:
[1]

J. K. Beem and P. Ehrlich, Global Lorentzian Geometry, 1$^{st}$ edition, Markel-Deccer, New York, 1981.  Google Scholar

[2]

J. K. Beem, P. Ehrlich and K. Easley, Global Lorentzian Geometry, 2$^{nd}$ edition, Markel-Deccer, New York, 1996.  Google Scholar

[3]

A. L. Besse, Einstein Manifolds, Ergeb. Math. Grenzgeb., 3, Berlin, Heidelberg, New York, Springer Verlag, 1987. doi: 10.1007/978-3-540-74311-8.  Google Scholar

[4]

R. L. Bishop and B. O'Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc., 145 (1969), 1-49.  doi: 10.1090/S0002-9947-1969-0251664-4.  Google Scholar

[5]

P. G. C. Bonfim and R. Pina, Quasi-Einstein manifolds with structure of warped product, arXiv: 1905.02006. doi: 128.84.4.27/1905.02006.  Google Scholar

[6]

M. Brózos-Vázquez, E. García-Río and R. Vázquez-Lorenzo, Some remarks on locally conformally flat static space-times, Journal of Mathematical Physics, 46 (2005), 022501. doi: 10.1063/1.1832755.  Google Scholar

[7]

M. Brozos-VázquezE. Garcia-Rio and R. Vázquez-Lorenzo, Complete locally conformally flat manifolds of negative curvature, Pac. J. Math., 226 (2006), 201-219.  doi: 10.2140/pjm.2006.226.201.  Google Scholar

[8]

M. Brozos-Vázquez, E. Garcia-Rio and R. Vázquez-Lorenzo, Warped product metrics and locally conformally flat structures, Matemática Contemporânea, in: SBM, 28 (2000), 91–110.  Google Scholar

[9]

Q. Chen and C. He, On Bach flat warped product Einstein manifolds, Pac. J. Math., 265 (2013), 313-326.  doi: 10.2140/pjm.2013.265.313.  Google Scholar

[10]

J. Choi, Multiply warped products with nonsmooth metrics, Journal of Mathematical Physics, 41 (2000), 8163. doi: 10.1063/1.1287432.  Google Scholar

[11]

F. Dobarro and B. Unal, $\ddot{U}nal$, Curvature of multiply warped products, Journal of Geometry and Physics, 55 (2005), 75-106.  doi: 10.1016/j.geomphys.2004.12.001.  Google Scholar

[12]

D. Dumitru, On multiply Einstein warped products, Scientific Annals of the Alexandru Loan Cuza University of Laşi (New Series). Mathematics, Tomul LXII, 2016, F.1.  Google Scholar

[13]

F. Gholami, F. Darabi and A. Haji-Badali, Multiply-warped product metrices and reduction of Einstein equations, International Journal of Geometric Methods in Modern Physics, 14 (2017), 1750021. doi: 10.1142/S0219887817500219.  Google Scholar

[14]

C. HeP. Petersen and W. Wylie, On the classification of warped product Einstein metrics, Comm. Anal. Geom., 20 (2012), 271-312.  doi: 10.4310/CAG.2012.v20.n2.a3.  Google Scholar

[15]

B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Pure and Applied Mathematics, 103, Academic Press, Inc., New York, 1983.  Google Scholar

[16]

S. PahanB. Pal and A. Bhattacharyya, On Ricci flat warped products with a quarter-symmetric connection, J. Geom., 107 (2016), 627-634.  doi: 10.1007/s00022-015-0301-3.  Google Scholar

[17]

S. Pahan, B. Pal and A. Bhattacharyya, On Einstein warped products with a quarter-symmetric connection, International Journal of Geometric Methods in Modern Physics, 14 (2017), 1750050. doi: 10.1142/S0219887817500505.  Google Scholar

[18]

M. L. D. Sousa and R. Pina, A family of warped product semi-Riemannian Einstein metrics, Differential Geometry and its Applications, 50 (2017), 105-115.  doi: 10.1016/j.difgeo.2016.11.004.  Google Scholar

[19]

B. Unal, Multiply warped products, J. Geom. Phys., 34 (2000), 287-301.  doi: 10.1016/S0393-0440(99)00072-8.  Google Scholar

show all references

References:
[1]

J. K. Beem and P. Ehrlich, Global Lorentzian Geometry, 1$^{st}$ edition, Markel-Deccer, New York, 1981.  Google Scholar

[2]

J. K. Beem, P. Ehrlich and K. Easley, Global Lorentzian Geometry, 2$^{nd}$ edition, Markel-Deccer, New York, 1996.  Google Scholar

[3]

A. L. Besse, Einstein Manifolds, Ergeb. Math. Grenzgeb., 3, Berlin, Heidelberg, New York, Springer Verlag, 1987. doi: 10.1007/978-3-540-74311-8.  Google Scholar

[4]

R. L. Bishop and B. O'Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc., 145 (1969), 1-49.  doi: 10.1090/S0002-9947-1969-0251664-4.  Google Scholar

[5]

P. G. C. Bonfim and R. Pina, Quasi-Einstein manifolds with structure of warped product, arXiv: 1905.02006. doi: 128.84.4.27/1905.02006.  Google Scholar

[6]

M. Brózos-Vázquez, E. García-Río and R. Vázquez-Lorenzo, Some remarks on locally conformally flat static space-times, Journal of Mathematical Physics, 46 (2005), 022501. doi: 10.1063/1.1832755.  Google Scholar

[7]

M. Brozos-VázquezE. Garcia-Rio and R. Vázquez-Lorenzo, Complete locally conformally flat manifolds of negative curvature, Pac. J. Math., 226 (2006), 201-219.  doi: 10.2140/pjm.2006.226.201.  Google Scholar

[8]

M. Brozos-Vázquez, E. Garcia-Rio and R. Vázquez-Lorenzo, Warped product metrics and locally conformally flat structures, Matemática Contemporânea, in: SBM, 28 (2000), 91–110.  Google Scholar

[9]

Q. Chen and C. He, On Bach flat warped product Einstein manifolds, Pac. J. Math., 265 (2013), 313-326.  doi: 10.2140/pjm.2013.265.313.  Google Scholar

[10]

J. Choi, Multiply warped products with nonsmooth metrics, Journal of Mathematical Physics, 41 (2000), 8163. doi: 10.1063/1.1287432.  Google Scholar

[11]

F. Dobarro and B. Unal, $\ddot{U}nal$, Curvature of multiply warped products, Journal of Geometry and Physics, 55 (2005), 75-106.  doi: 10.1016/j.geomphys.2004.12.001.  Google Scholar

[12]

D. Dumitru, On multiply Einstein warped products, Scientific Annals of the Alexandru Loan Cuza University of Laşi (New Series). Mathematics, Tomul LXII, 2016, F.1.  Google Scholar

[13]

F. Gholami, F. Darabi and A. Haji-Badali, Multiply-warped product metrices and reduction of Einstein equations, International Journal of Geometric Methods in Modern Physics, 14 (2017), 1750021. doi: 10.1142/S0219887817500219.  Google Scholar

[14]

C. HeP. Petersen and W. Wylie, On the classification of warped product Einstein metrics, Comm. Anal. Geom., 20 (2012), 271-312.  doi: 10.4310/CAG.2012.v20.n2.a3.  Google Scholar

[15]

B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Pure and Applied Mathematics, 103, Academic Press, Inc., New York, 1983.  Google Scholar

[16]

S. PahanB. Pal and A. Bhattacharyya, On Ricci flat warped products with a quarter-symmetric connection, J. Geom., 107 (2016), 627-634.  doi: 10.1007/s00022-015-0301-3.  Google Scholar

[17]

S. Pahan, B. Pal and A. Bhattacharyya, On Einstein warped products with a quarter-symmetric connection, International Journal of Geometric Methods in Modern Physics, 14 (2017), 1750050. doi: 10.1142/S0219887817500505.  Google Scholar

[18]

M. L. D. Sousa and R. Pina, A family of warped product semi-Riemannian Einstein metrics, Differential Geometry and its Applications, 50 (2017), 105-115.  doi: 10.1016/j.difgeo.2016.11.004.  Google Scholar

[19]

B. Unal, Multiply warped products, J. Geom. Phys., 34 (2000), 287-301.  doi: 10.1016/S0393-0440(99)00072-8.  Google Scholar

[1]

Bing Sun, Liangyun Chen, Yan Cao. On the universal $ \alpha $-central extensions of the semi-direct product of Hom-preLie algebras. Electronic Research Archive, , () : -. doi: 10.3934/era.2021004

[2]

Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127

[3]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[4]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037

[5]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[6]

Azmy S. Ackleh, Nicolas Saintier. Diffusive limit to a selection-mutation equation with small mutation formulated on the space of measures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1469-1497. doi: 10.3934/dcdsb.2020169

[7]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[8]

Yunping Jiang. Global graph of metric entropy on expanding Blaschke products. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1469-1482. doi: 10.3934/dcds.2020325

[9]

Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021004

[10]

Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327

[11]

Soonki Hong, Seonhee Lim. Martin boundary of brownian motion on Gromov hyperbolic metric graphs. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021014

[12]

Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031

[13]

Angelica Pachon, Federico Polito, Costantino Ricciuti. On discrete-time semi-Markov processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1499-1529. doi: 10.3934/dcdsb.2020170

[14]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[15]

Rafael López, Óscar Perdomo. Constant-speed ramps for a central force field. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021003

[16]

Xiaoming Wang. Upper semi-continuity of stationary statistical properties of dissipative systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 521-540. doi: 10.3934/dcds.2009.23.521

[17]

Qianqian Hou, Tai-Chia Lin, Zhi-An Wang. On a singularly perturbed semi-linear problem with Robin boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 401-414. doi: 10.3934/dcdsb.2020083

[18]

Ke Su, Yumeng Lin, Chun Xu. A new adaptive method to nonlinear semi-infinite programming. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021012

[19]

Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2021, 17 (1) : 169-184. doi: 10.3934/jimo.2019105

[20]

Ömer Arslan, Selçuk Kürşat İşleyen. A model and two heuristic methods for The Multi-Product Inventory-Location-Routing Problem with heterogeneous fleet. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021002

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (89)
  • HTML views (245)
  • Cited by (0)

Other articles
by authors

[Back to Top]