doi: 10.3934/jgm.2020017

A family of multiply warped product semi-riemannian einstein metrics

1. 

Department of Mathematics, Institute of Science, Banaras Hindu University, Varanasi-221005, India

* Corresponding author: Buddhadev Pal

Received  January 2020 Revised  June 2020 Published  July 2020

Fund Project: The Second author is supported by UGC JRF of India, Ref. No: 1269/(SC)(CSIR-UGC NET DEC. 2016)

In this paper, we characterize multiply warped product semi -Riemannian manifolds when the base is conformal to an $ n $-dimensional pseudo-Euclidean space. We prove some conditions on warped product semi- Riemannian manifolds to be an Einstein manifold which is invariant under the action of an $ (n-1) $-dimensional translation group. After that we apply this result for the case of Ricci-flat multiply warped product space when the fibers are Ricci-flat. We also discuss the existence of infinitely many Ricci-flat multiply warped product spaces under the same action with null like vector.

Citation: Buddhadev Pal, Pankaj Kumar. A family of multiply warped product semi-riemannian einstein metrics. Journal of Geometric Mechanics, doi: 10.3934/jgm.2020017
References:
[1]

J. K. Beem and P. Ehrlich, Global Lorentzian Geometry, 1$^{st}$ edition, Markel-Deccer, New York, 1981.  Google Scholar

[2]

J. K. Beem, P. Ehrlich and K. Easley, Global Lorentzian Geometry, 2$^{nd}$ edition, Markel-Deccer, New York, 1996.  Google Scholar

[3]

A. L. Besse, Einstein Manifolds, Ergeb. Math. Grenzgeb., 3, Berlin, Heidelberg, New York, Springer Verlag, 1987. doi: 10.1007/978-3-540-74311-8.  Google Scholar

[4]

R. L. Bishop and B. O'Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc., 145 (1969), 1-49.  doi: 10.1090/S0002-9947-1969-0251664-4.  Google Scholar

[5]

P. G. C. Bonfim and R. Pina, Quasi-Einstein manifolds with structure of warped product, arXiv: 1905.02006. doi: 128.84.4.27/1905.02006.  Google Scholar

[6]

M. Brózos-Vázquez, E. García-Río and R. Vázquez-Lorenzo, Some remarks on locally conformally flat static space-times, Journal of Mathematical Physics, 46 (2005), 022501. doi: 10.1063/1.1832755.  Google Scholar

[7]

M. Brozos-VázquezE. Garcia-Rio and R. Vázquez-Lorenzo, Complete locally conformally flat manifolds of negative curvature, Pac. J. Math., 226 (2006), 201-219.  doi: 10.2140/pjm.2006.226.201.  Google Scholar

[8]

M. Brozos-Vázquez, E. Garcia-Rio and R. Vázquez-Lorenzo, Warped product metrics and locally conformally flat structures, Matemática Contemporânea, in: SBM, 28 (2000), 91–110.  Google Scholar

[9]

Q. Chen and C. He, On Bach flat warped product Einstein manifolds, Pac. J. Math., 265 (2013), 313-326.  doi: 10.2140/pjm.2013.265.313.  Google Scholar

[10]

J. Choi, Multiply warped products with nonsmooth metrics, Journal of Mathematical Physics, 41 (2000), 8163. doi: 10.1063/1.1287432.  Google Scholar

[11]

F. Dobarro and B. Unal, $\ddot{U}nal$, Curvature of multiply warped products, Journal of Geometry and Physics, 55 (2005), 75-106.  doi: 10.1016/j.geomphys.2004.12.001.  Google Scholar

[12]

D. Dumitru, On multiply Einstein warped products, Scientific Annals of the Alexandru Loan Cuza University of Laşi (New Series). Mathematics, Tomul LXII, 2016, F.1.  Google Scholar

[13]

F. Gholami, F. Darabi and A. Haji-Badali, Multiply-warped product metrices and reduction of Einstein equations, International Journal of Geometric Methods in Modern Physics, 14 (2017), 1750021. doi: 10.1142/S0219887817500219.  Google Scholar

[14]

C. HeP. Petersen and W. Wylie, On the classification of warped product Einstein metrics, Comm. Anal. Geom., 20 (2012), 271-312.  doi: 10.4310/CAG.2012.v20.n2.a3.  Google Scholar

[15]

B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Pure and Applied Mathematics, 103, Academic Press, Inc., New York, 1983.  Google Scholar

[16]

S. PahanB. Pal and A. Bhattacharyya, On Ricci flat warped products with a quarter-symmetric connection, J. Geom., 107 (2016), 627-634.  doi: 10.1007/s00022-015-0301-3.  Google Scholar

[17]

S. Pahan, B. Pal and A. Bhattacharyya, On Einstein warped products with a quarter-symmetric connection, International Journal of Geometric Methods in Modern Physics, 14 (2017), 1750050. doi: 10.1142/S0219887817500505.  Google Scholar

[18]

M. L. D. Sousa and R. Pina, A family of warped product semi-Riemannian Einstein metrics, Differential Geometry and its Applications, 50 (2017), 105-115.  doi: 10.1016/j.difgeo.2016.11.004.  Google Scholar

[19]

B. Unal, Multiply warped products, J. Geom. Phys., 34 (2000), 287-301.  doi: 10.1016/S0393-0440(99)00072-8.  Google Scholar

show all references

References:
[1]

J. K. Beem and P. Ehrlich, Global Lorentzian Geometry, 1$^{st}$ edition, Markel-Deccer, New York, 1981.  Google Scholar

[2]

J. K. Beem, P. Ehrlich and K. Easley, Global Lorentzian Geometry, 2$^{nd}$ edition, Markel-Deccer, New York, 1996.  Google Scholar

[3]

A. L. Besse, Einstein Manifolds, Ergeb. Math. Grenzgeb., 3, Berlin, Heidelberg, New York, Springer Verlag, 1987. doi: 10.1007/978-3-540-74311-8.  Google Scholar

[4]

R. L. Bishop and B. O'Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc., 145 (1969), 1-49.  doi: 10.1090/S0002-9947-1969-0251664-4.  Google Scholar

[5]

P. G. C. Bonfim and R. Pina, Quasi-Einstein manifolds with structure of warped product, arXiv: 1905.02006. doi: 128.84.4.27/1905.02006.  Google Scholar

[6]

M. Brózos-Vázquez, E. García-Río and R. Vázquez-Lorenzo, Some remarks on locally conformally flat static space-times, Journal of Mathematical Physics, 46 (2005), 022501. doi: 10.1063/1.1832755.  Google Scholar

[7]

M. Brozos-VázquezE. Garcia-Rio and R. Vázquez-Lorenzo, Complete locally conformally flat manifolds of negative curvature, Pac. J. Math., 226 (2006), 201-219.  doi: 10.2140/pjm.2006.226.201.  Google Scholar

[8]

M. Brozos-Vázquez, E. Garcia-Rio and R. Vázquez-Lorenzo, Warped product metrics and locally conformally flat structures, Matemática Contemporânea, in: SBM, 28 (2000), 91–110.  Google Scholar

[9]

Q. Chen and C. He, On Bach flat warped product Einstein manifolds, Pac. J. Math., 265 (2013), 313-326.  doi: 10.2140/pjm.2013.265.313.  Google Scholar

[10]

J. Choi, Multiply warped products with nonsmooth metrics, Journal of Mathematical Physics, 41 (2000), 8163. doi: 10.1063/1.1287432.  Google Scholar

[11]

F. Dobarro and B. Unal, $\ddot{U}nal$, Curvature of multiply warped products, Journal of Geometry and Physics, 55 (2005), 75-106.  doi: 10.1016/j.geomphys.2004.12.001.  Google Scholar

[12]

D. Dumitru, On multiply Einstein warped products, Scientific Annals of the Alexandru Loan Cuza University of Laşi (New Series). Mathematics, Tomul LXII, 2016, F.1.  Google Scholar

[13]

F. Gholami, F. Darabi and A. Haji-Badali, Multiply-warped product metrices and reduction of Einstein equations, International Journal of Geometric Methods in Modern Physics, 14 (2017), 1750021. doi: 10.1142/S0219887817500219.  Google Scholar

[14]

C. HeP. Petersen and W. Wylie, On the classification of warped product Einstein metrics, Comm. Anal. Geom., 20 (2012), 271-312.  doi: 10.4310/CAG.2012.v20.n2.a3.  Google Scholar

[15]

B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Pure and Applied Mathematics, 103, Academic Press, Inc., New York, 1983.  Google Scholar

[16]

S. PahanB. Pal and A. Bhattacharyya, On Ricci flat warped products with a quarter-symmetric connection, J. Geom., 107 (2016), 627-634.  doi: 10.1007/s00022-015-0301-3.  Google Scholar

[17]

S. Pahan, B. Pal and A. Bhattacharyya, On Einstein warped products with a quarter-symmetric connection, International Journal of Geometric Methods in Modern Physics, 14 (2017), 1750050. doi: 10.1142/S0219887817500505.  Google Scholar

[18]

M. L. D. Sousa and R. Pina, A family of warped product semi-Riemannian Einstein metrics, Differential Geometry and its Applications, 50 (2017), 105-115.  doi: 10.1016/j.difgeo.2016.11.004.  Google Scholar

[19]

B. Unal, Multiply warped products, J. Geom. Phys., 34 (2000), 287-301.  doi: 10.1016/S0393-0440(99)00072-8.  Google Scholar

[1]

Federico Cacciafesta, Anne-Sophie De Suzzoni. Weak dispersion for the Dirac equation on asymptotically flat and warped product spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4359-4398. doi: 10.3934/dcds.2019177

[2]

Franz W. Kamber and Peter W. Michor. The flow completion of a manifold with vector field. Electronic Research Announcements, 2000, 6: 95-97.

[3]

Alexander Nabutovsky and Regina Rotman. Lengths of geodesics between two points on a Riemannian manifold. Electronic Research Announcements, 2007, 13: 13-20.

[4]

Aylin Aydoğdu, Sean T. McQuade, Nastassia Pouradier Duteil. Opinion Dynamics on a General Compact Riemannian Manifold. Networks & Heterogeneous Media, 2017, 12 (3) : 489-523. doi: 10.3934/nhm.2017021

[5]

Brian Smith and Gilbert Weinstein. On the connectedness of the space of initial data for the Einstein equations. Electronic Research Announcements, 2000, 6: 52-63.

[6]

Saikat Mazumdar. Struwe's decomposition for a polyharmonic operator on a compact Riemannian manifold with or without boundary. Communications on Pure & Applied Analysis, 2017, 16 (1) : 311-330. doi: 10.3934/cpaa.2017015

[7]

Shengbing Deng, Zied Khemiri, Fethi Mahmoudi. On spike solutions for a singularly perturbed problem in a compact riemannian manifold. Communications on Pure & Applied Analysis, 2018, 17 (5) : 2063-2084. doi: 10.3934/cpaa.2018098

[8]

Erwann Delay, Pieralberto Sicbaldi. Extremal domains for the first eigenvalue in a general compact Riemannian manifold. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5799-5825. doi: 10.3934/dcds.2015.35.5799

[9]

Anna Maria Candela, J.L. Flores, M. Sánchez. A quadratic Bolza-type problem in a non-complete Riemannian manifold. Conference Publications, 2003, 2003 (Special) : 173-181. doi: 10.3934/proc.2003.2003.173

[10]

Jordi Gaset, Narciso Román-Roy. New multisymplectic approach to the Metric-Affine (Einstein-Palatini) action for gravity. Journal of Geometric Mechanics, 2019, 11 (3) : 361-396. doi: 10.3934/jgm.2019019

[11]

Jongmin Han, Juhee Sohn. On the self-dual Einstein-Maxwell-Higgs equation on compact surfaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 819-839. doi: 10.3934/dcds.2019034

[12]

Brahim Alouini, Olivier Goubet. Regularity of the attractor for a Bose-Einstein equation in a two dimensional unbounded domain. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 651-677. doi: 10.3934/dcdsb.2014.19.651

[13]

Giovanna Citti, Maria Manfredini, Alessandro Sarti. Finite difference approximation of the Mumford and Shah functional in a contact manifold of the Heisenberg space. Communications on Pure & Applied Analysis, 2010, 9 (4) : 905-927. doi: 10.3934/cpaa.2010.9.905

[14]

Agust Sverrir Egilsson. On embedding the $1:1:2$ resonance space in a Poisson manifold. Electronic Research Announcements, 1995, 1: 48-56.

[15]

Uta Renata Freiberg. Einstein relation on fractal objects. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 509-525. doi: 10.3934/dcdsb.2012.17.509

[16]

Colin Guillarmou, Antônio Sá Barreto. Inverse problems for Einstein manifolds. Inverse Problems & Imaging, 2009, 3 (1) : 1-15. doi: 10.3934/ipi.2009.3.1

[17]

Simone Calogero, Stephen Pankavich. On the spatially homogeneous and isotropic Einstein-Vlasov-Fokker-Planck system with cosmological scalar field. Kinetic & Related Models, 2018, 11 (5) : 1063-1083. doi: 10.3934/krm.2018041

[18]

César Augusto Bortot, Wellington José Corrêa, Ryuichi Fukuoka, Thales Maier Souza. Exponential stability for the locally damped defocusing Schrödinger equation on compact manifold. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1367-1386. doi: 10.3934/cpaa.2020067

[19]

Qingfang Wang. The Nehari manifold for a fractional Laplacian equation involving critical nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2261-2281. doi: 10.3934/cpaa.2018108

[20]

Aurore Back, Emmanuel Frénod. Geometric two-scale convergence on manifold and applications to the Vlasov equation. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : 223-241. doi: 10.3934/dcdss.2015.8.223

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (37)
  • HTML views (26)
  • Cited by (0)

Other articles
by authors

[Back to Top]