September  2020, 12(3): 525-540. doi: 10.3934/jgm.2020019

Continuous singularities in hamiltonian relative equilibria with abelian momentum isotropy

Dedicated to Professor James Montaldi

Received  September 2019 Revised  June 2020 Published  July 2020

We survey several aspects of the qualitative dynamics around Hamiltonian relative equilibria. We pay special attention to the role of continuous singularities and its effect in their stability, persistence and bifurcations. Our approach is semi-global using extensively the Hamiltonian tube of Marle, Guillemin and Sternberg.

Citation: Miguel Rodríguez-Olmos. Continuous singularities in hamiltonian relative equilibria with abelian momentum isotropy. Journal of Geometric Mechanics, 2020, 12 (3) : 525-540. doi: 10.3934/jgm.2020019
References:
[1]

R. Abraham and J. E. Marsden, Foundations of Mechanics, 2$^{nd}$ edition, Addison-Wesley Pub. Comp. Inc., 1978.  Google Scholar

[2]

P. ChossatJ. P. Ortega and T. S. Ratiu, Hamiltonian Hopf bifurcation with symmetry, Archive for Rational Mechanics and Analysis, 63 (2002), 1-33.  doi: 10.1007/s002050200182.  Google Scholar

[3]

J. J. Duistermaat and J. A. Kolk, Lie Groups, Universitext, Springer-Verlag, 2000. doi: 10.1007/978-3-642-56936-4.  Google Scholar

[4]

L. Euler, De motu rectilineo trium corporum se mutuo attrahentium, Novi Comm. Acad. Sci. Imp. Petrop., 11 (1767), 144-151.   Google Scholar

[5]

M. Fontaine and J. Montaldi, Persistence of stationary motion under explicit symmetry breaking perturbation, Nonlinearity, 32 (2019), 1999-2023.  doi: 10.1088/1361-6544/ab003e.  Google Scholar

[6]

F. GrabsiJ. Montaldi and J. P. Ortega, Bifurcation and forced symmetry breaking in Hamiltonian systems, Comptes Rendus Mathématique Académie des Sciences, 7 (2004), 565-570.  doi: 10.1016/j.crma.2004.01.029.  Google Scholar

[7]

V. Guillemin and S. Sternberg, A normal form for the moment map, in Differential Geometric Methods in Mathematical Physics, S. Sternberg ed. Mathematical Physics Studies, 6, 1984.  Google Scholar

[8]

J. L. Lagrange, Essai sur le probléme des trois corps, Oeuvres, 6 (1772), 229-334.   Google Scholar

[9]

E. Lerman and S. F. Singer, Stability and persistence of relative equilibria at singular values of the moment map, Nonlinearity, 11 (1998), 1637-1649.  doi: 10.1088/0951-7715/11/6/012.  Google Scholar

[10]

D. LewisT. S. RatiuJ. C. Simo and J. E. Marsden, The heavy top: A geometric treatment, Nonlinearity, 5 (1992), 1-48.  doi: 10.1088/0951-7715/5/1/001.  Google Scholar

[11]

D. Lewis and J. C. Simo, Nonlinear stability of rotating pseudo-rigid bodies, Proc. Roy. Soc. London Ser. A, 427 (1990), 281-319.  doi: 10.1098/rspa.1990.0014.  Google Scholar

[12]

C. LimJ. Montaldi and M. Roberts, Relative equilibria of point vortices on the sphere, Physica D: Nonlinear Phenomena, 148 (2001), 97-135.  doi: 10.1016/S0167-2789(00)00167-6.  Google Scholar

[13]

C. M. Marle, Modèle d'action hamiltonienne d'un groupe de Lie sur une variété symplectique, Rend. Sem. Mat. Univ. Politec. Torino, 43 (1985), 227-251.   Google Scholar

[14]

J. E. Marsden, Lectures on Mechanics, Lecture Note Series, 174, LMS, Cambridge University Press, 1992. doi: 10.1017/CBO9780511624001.  Google Scholar

[15]

J. E. Marsden and A. Weinstein, Reduction of symplectic manifolds with symmetry, Rep. Mathematical Phys., 5 (1974), 121-130.  doi: 10.1016/0034-4877(74)90021-4.  Google Scholar

[16]

J. Montaldi, Persistence and stability of relative equilibria, Nonlinearity, 10 (1997), 449-466.  doi: 10.1088/0951-7715/10/2/009.  Google Scholar

[17]

J. Montaldi, Bifurcations of relative equilibria near zero momentum in Hamiltonian systems with spherical symmetry, Journal of Geometric Mechanics, 6 (2014), 237-260.  doi: 10.3934/jgm.2014.6.237.  Google Scholar

[18]

J. Montaldi and C. Nava-Gaxiola, Point vortices on the hyperbolic plane, J. Mathematical Physics, 55 (2014), 1-14.  doi: 10.1063/1.4897210.  Google Scholar

[19]

J. Montaldi and M. Roberts, Relative equilibria of molecules, J. Nonlinear Science, 9 (1999), 53-88.  doi: 10.1007/s003329900064.  Google Scholar

[20]

J. Montaldi and M. Roberts, Note on semisymplectic actions of Lie groups, C. R. Acad. Sci. Paris Ser. I, 330 (2000), 1079-1084.  doi: 10.1016/S0764-4442(00)00322-0.  Google Scholar

[21]

J. MontaldiM. Roberts and I. Stewart, Periodic solutions near equilibria of symmetric Hamiltonian systems, Phil. Trans. R. Soc., 325 (1988), 237-293.  doi: 10.1098/rsta.1988.0053.  Google Scholar

[22]

J. MontaldiM. Roberts and I. Stewart, Existence of nonlinear normal modes in symmetric Hamiltonian systems, Nonlinearity, 3 (1990), 695-730.  doi: 10.1088/0951-7715/3/3/009.  Google Scholar

[23]

J. MontaldiM. Roberts and I. Stewart, Stability of nonlinear normal modes in symmetric Hamiltonian systems, Nonlinearity, 3 (1990), 731-772.  doi: 10.1088/0951-7715/3/3/010.  Google Scholar

[24]

J. Montaldi and M. Rodríguez-Olmos, Hamiltonian relative equilibria with continuous isotropy, arXiv: 1509.04961. Google Scholar

[25]

J. Montaldi and A. Shaddad, Generalized point vortex dynamics on CP$^2$, J. Geometric Mechanics, to appear. doi: 10.3934/jgm.2019030.  Google Scholar

[26]

J. MontaldiA. Souliere and T. Tokieda, Vortex dynamics on cylinders, SIAM J. on Applied Dynamical Systems, 2 (2003), 417-430.  doi: 10.1137/S1111111102415569.  Google Scholar

[27]

J. Montaldi and T. Tokieda, Openness of momentum maps and persistence of extremal relative equilibria, Topology, 42 (2003), 833-844.  doi: 10.1016/S0040-9383(02)00047-2.  Google Scholar

[28]

J. Montaldi and T. Tokieda, Deformation of geometry and bifurcations of vortex rings, Springer Proceedings in Mathematics and Statistics, 35 (2013), 335-370.  doi: 10.1007/978-3-0348-0451-6_14.  Google Scholar

[29]

J. Moser, Periodic orbits near an equilibrium and a theorem by Alan Weinstein, Communications in Pure and Applied Mathematics, 29 (1976), 727-747.  doi: 10.1002/cpa.3160290613.  Google Scholar

[30]

I. Newton, Philosophiae Naturalis Principia Mathematica, Book III, London, 1687.  Google Scholar

[31]

J. P. Ortega and T. S. Ratiu, Stability of Hamiltonian relative equilibria, Nonlinearity, 12 (1999), 693-720.  doi: 10.1088/0951-7715/12/3/315.  Google Scholar

[32]

J. P. Ortega and T. S. Ratiu, Momentum Maps and Hamiltonian Reduction, Progress in Mathematics, 222, Birkhauser-Verlag, 2004. doi: 10.1007/978-1-4757-3811-7.  Google Scholar

[33]

R. S. Palais, The principle of symmetric criticality, Comm. Math. Phys., 69 (1979), 19-30.  doi: 10.1007/BF01941322.  Google Scholar

[34]

G. W. Patrick, Relative equilibria in Hamiltonian systems: The dynamics interpretation of nonlinear stability on the reduced phase space, J. Geom. Phys., 9 (1992), 111-119.  doi: 10.1016/0393-0440(92)90015-S.  Google Scholar

[35]

F. Laurent-PolzJ. Montaldi and M. Roberts, Point Vortices on the Sphere: Stability of Symmetric Relative Equilibria, Journal of Geometric Mechanics, 3 (2011), 439-486.  doi: 10.3934/jgm.2011.3.439.  Google Scholar

[36]

M. Roberts and M. E. Sousa-Dias, Bifurcations from relative equilibria of Hamiltonian systems, Nonlinearity, 10 (1997), 1719-1738.  doi: 10.1088/0951-7715/10/6/015.  Google Scholar

[37]

M. RobertsC. Wulff and J. S. Lamb, Hamiltonian systems near relative equilibria, J. Differential Equations, 179 (2002), 562-604.  doi: 10.1006/jdeq.2001.4045.  Google Scholar

[38]

J. C. SimoD. Lewis and J. E. Marsden, Stability of relative equilibria. Part I: The reduced energy-momentum method, Arch. Rational Mech. Anal., 115 (1991), 15-59.  doi: 10.1007/BF01881678.  Google Scholar

[39]

S. Smale, Topology and Mechanics I, Inventiones Math., 10 (1970), 305-331.  doi: 10.1007/BF01418778.  Google Scholar

[40]

A. Weinstein, Normal modes for nonlinear hamiltonian systems, Inventiones Mathematicae, 20 (1973), 47-57.  doi: 10.1007/BF01405263.  Google Scholar

show all references

References:
[1]

R. Abraham and J. E. Marsden, Foundations of Mechanics, 2$^{nd}$ edition, Addison-Wesley Pub. Comp. Inc., 1978.  Google Scholar

[2]

P. ChossatJ. P. Ortega and T. S. Ratiu, Hamiltonian Hopf bifurcation with symmetry, Archive for Rational Mechanics and Analysis, 63 (2002), 1-33.  doi: 10.1007/s002050200182.  Google Scholar

[3]

J. J. Duistermaat and J. A. Kolk, Lie Groups, Universitext, Springer-Verlag, 2000. doi: 10.1007/978-3-642-56936-4.  Google Scholar

[4]

L. Euler, De motu rectilineo trium corporum se mutuo attrahentium, Novi Comm. Acad. Sci. Imp. Petrop., 11 (1767), 144-151.   Google Scholar

[5]

M. Fontaine and J. Montaldi, Persistence of stationary motion under explicit symmetry breaking perturbation, Nonlinearity, 32 (2019), 1999-2023.  doi: 10.1088/1361-6544/ab003e.  Google Scholar

[6]

F. GrabsiJ. Montaldi and J. P. Ortega, Bifurcation and forced symmetry breaking in Hamiltonian systems, Comptes Rendus Mathématique Académie des Sciences, 7 (2004), 565-570.  doi: 10.1016/j.crma.2004.01.029.  Google Scholar

[7]

V. Guillemin and S. Sternberg, A normal form for the moment map, in Differential Geometric Methods in Mathematical Physics, S. Sternberg ed. Mathematical Physics Studies, 6, 1984.  Google Scholar

[8]

J. L. Lagrange, Essai sur le probléme des trois corps, Oeuvres, 6 (1772), 229-334.   Google Scholar

[9]

E. Lerman and S. F. Singer, Stability and persistence of relative equilibria at singular values of the moment map, Nonlinearity, 11 (1998), 1637-1649.  doi: 10.1088/0951-7715/11/6/012.  Google Scholar

[10]

D. LewisT. S. RatiuJ. C. Simo and J. E. Marsden, The heavy top: A geometric treatment, Nonlinearity, 5 (1992), 1-48.  doi: 10.1088/0951-7715/5/1/001.  Google Scholar

[11]

D. Lewis and J. C. Simo, Nonlinear stability of rotating pseudo-rigid bodies, Proc. Roy. Soc. London Ser. A, 427 (1990), 281-319.  doi: 10.1098/rspa.1990.0014.  Google Scholar

[12]

C. LimJ. Montaldi and M. Roberts, Relative equilibria of point vortices on the sphere, Physica D: Nonlinear Phenomena, 148 (2001), 97-135.  doi: 10.1016/S0167-2789(00)00167-6.  Google Scholar

[13]

C. M. Marle, Modèle d'action hamiltonienne d'un groupe de Lie sur une variété symplectique, Rend. Sem. Mat. Univ. Politec. Torino, 43 (1985), 227-251.   Google Scholar

[14]

J. E. Marsden, Lectures on Mechanics, Lecture Note Series, 174, LMS, Cambridge University Press, 1992. doi: 10.1017/CBO9780511624001.  Google Scholar

[15]

J. E. Marsden and A. Weinstein, Reduction of symplectic manifolds with symmetry, Rep. Mathematical Phys., 5 (1974), 121-130.  doi: 10.1016/0034-4877(74)90021-4.  Google Scholar

[16]

J. Montaldi, Persistence and stability of relative equilibria, Nonlinearity, 10 (1997), 449-466.  doi: 10.1088/0951-7715/10/2/009.  Google Scholar

[17]

J. Montaldi, Bifurcations of relative equilibria near zero momentum in Hamiltonian systems with spherical symmetry, Journal of Geometric Mechanics, 6 (2014), 237-260.  doi: 10.3934/jgm.2014.6.237.  Google Scholar

[18]

J. Montaldi and C. Nava-Gaxiola, Point vortices on the hyperbolic plane, J. Mathematical Physics, 55 (2014), 1-14.  doi: 10.1063/1.4897210.  Google Scholar

[19]

J. Montaldi and M. Roberts, Relative equilibria of molecules, J. Nonlinear Science, 9 (1999), 53-88.  doi: 10.1007/s003329900064.  Google Scholar

[20]

J. Montaldi and M. Roberts, Note on semisymplectic actions of Lie groups, C. R. Acad. Sci. Paris Ser. I, 330 (2000), 1079-1084.  doi: 10.1016/S0764-4442(00)00322-0.  Google Scholar

[21]

J. MontaldiM. Roberts and I. Stewart, Periodic solutions near equilibria of symmetric Hamiltonian systems, Phil. Trans. R. Soc., 325 (1988), 237-293.  doi: 10.1098/rsta.1988.0053.  Google Scholar

[22]

J. MontaldiM. Roberts and I. Stewart, Existence of nonlinear normal modes in symmetric Hamiltonian systems, Nonlinearity, 3 (1990), 695-730.  doi: 10.1088/0951-7715/3/3/009.  Google Scholar

[23]

J. MontaldiM. Roberts and I. Stewart, Stability of nonlinear normal modes in symmetric Hamiltonian systems, Nonlinearity, 3 (1990), 731-772.  doi: 10.1088/0951-7715/3/3/010.  Google Scholar

[24]

J. Montaldi and M. Rodríguez-Olmos, Hamiltonian relative equilibria with continuous isotropy, arXiv: 1509.04961. Google Scholar

[25]

J. Montaldi and A. Shaddad, Generalized point vortex dynamics on CP$^2$, J. Geometric Mechanics, to appear. doi: 10.3934/jgm.2019030.  Google Scholar

[26]

J. MontaldiA. Souliere and T. Tokieda, Vortex dynamics on cylinders, SIAM J. on Applied Dynamical Systems, 2 (2003), 417-430.  doi: 10.1137/S1111111102415569.  Google Scholar

[27]

J. Montaldi and T. Tokieda, Openness of momentum maps and persistence of extremal relative equilibria, Topology, 42 (2003), 833-844.  doi: 10.1016/S0040-9383(02)00047-2.  Google Scholar

[28]

J. Montaldi and T. Tokieda, Deformation of geometry and bifurcations of vortex rings, Springer Proceedings in Mathematics and Statistics, 35 (2013), 335-370.  doi: 10.1007/978-3-0348-0451-6_14.  Google Scholar

[29]

J. Moser, Periodic orbits near an equilibrium and a theorem by Alan Weinstein, Communications in Pure and Applied Mathematics, 29 (1976), 727-747.  doi: 10.1002/cpa.3160290613.  Google Scholar

[30]

I. Newton, Philosophiae Naturalis Principia Mathematica, Book III, London, 1687.  Google Scholar

[31]

J. P. Ortega and T. S. Ratiu, Stability of Hamiltonian relative equilibria, Nonlinearity, 12 (1999), 693-720.  doi: 10.1088/0951-7715/12/3/315.  Google Scholar

[32]

J. P. Ortega and T. S. Ratiu, Momentum Maps and Hamiltonian Reduction, Progress in Mathematics, 222, Birkhauser-Verlag, 2004. doi: 10.1007/978-1-4757-3811-7.  Google Scholar

[33]

R. S. Palais, The principle of symmetric criticality, Comm. Math. Phys., 69 (1979), 19-30.  doi: 10.1007/BF01941322.  Google Scholar

[34]

G. W. Patrick, Relative equilibria in Hamiltonian systems: The dynamics interpretation of nonlinear stability on the reduced phase space, J. Geom. Phys., 9 (1992), 111-119.  doi: 10.1016/0393-0440(92)90015-S.  Google Scholar

[35]

F. Laurent-PolzJ. Montaldi and M. Roberts, Point Vortices on the Sphere: Stability of Symmetric Relative Equilibria, Journal of Geometric Mechanics, 3 (2011), 439-486.  doi: 10.3934/jgm.2011.3.439.  Google Scholar

[36]

M. Roberts and M. E. Sousa-Dias, Bifurcations from relative equilibria of Hamiltonian systems, Nonlinearity, 10 (1997), 1719-1738.  doi: 10.1088/0951-7715/10/6/015.  Google Scholar

[37]

M. RobertsC. Wulff and J. S. Lamb, Hamiltonian systems near relative equilibria, J. Differential Equations, 179 (2002), 562-604.  doi: 10.1006/jdeq.2001.4045.  Google Scholar

[38]

J. C. SimoD. Lewis and J. E. Marsden, Stability of relative equilibria. Part I: The reduced energy-momentum method, Arch. Rational Mech. Anal., 115 (1991), 15-59.  doi: 10.1007/BF01881678.  Google Scholar

[39]

S. Smale, Topology and Mechanics I, Inventiones Math., 10 (1970), 305-331.  doi: 10.1007/BF01418778.  Google Scholar

[40]

A. Weinstein, Normal modes for nonlinear hamiltonian systems, Inventiones Mathematicae, 20 (1973), 47-57.  doi: 10.1007/BF01405263.  Google Scholar

[1]

James Montaldi. Bifurcations of relative equilibria near zero momentum in Hamiltonian systems with spherical symmetry. Journal of Geometric Mechanics, 2014, 6 (2) : 237-260. doi: 10.3934/jgm.2014.6.237

[2]

Lyudmila Grigoryeva, Juan-Pablo Ortega, Stanislav S. Zub. Stability of Hamiltonian relative equilibria in symmetric magnetically confined rigid bodies. Journal of Geometric Mechanics, 2014, 6 (3) : 373-415. doi: 10.3934/jgm.2014.6.373

[3]

Antonio Giorgilli. Unstable equilibria of Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 855-871. doi: 10.3934/dcds.2001.7.855

[4]

Frederic Laurent-Polz, James Montaldi, Mark Roberts. Point vortices on the sphere: Stability of symmetric relative equilibria. Journal of Geometric Mechanics, 2011, 3 (4) : 439-486. doi: 10.3934/jgm.2011.3.439

[5]

PaweŁ Hitczenko, Georgi S. Medvedev. Stability of equilibria of randomly perturbed maps. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 369-381. doi: 10.3934/dcdsb.2017017

[6]

Alain Chenciner. The angular momentum of a relative equilibrium. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1033-1047. doi: 10.3934/dcds.2013.33.1033

[7]

Florian Rupp, Jürgen Scheurle. Classification of a class of relative equilibria in three body coulomb systems. Conference Publications, 2011, 2011 (Special) : 1254-1262. doi: 10.3934/proc.2011.2011.1254

[8]

Cesare Tronci. Momentum maps for mixed states in quantum and classical mechanics. Journal of Geometric Mechanics, 2019, 11 (4) : 639-656. doi: 10.3934/jgm.2019032

[9]

Lei Wang, Quan Yuan, Jia Li. Persistence of the hyperbolic lower dimensional non-twist invariant torus in a class of Hamiltonian systems. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1233-1250. doi: 10.3934/cpaa.2016.15.1233

[10]

Fengjie Geng, Junfang Zhao, Deming Zhu, Weipeng Zhang. Bifurcations of a nongeneric heteroclinic loop with nonhyperbolic equilibria. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 133-145. doi: 10.3934/dcdsb.2013.18.133

[11]

David Rojas, Pedro J. Torres. Bifurcation of relative equilibria generated by a circular vortex path in a circular domain. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 749-760. doi: 10.3934/dcdsb.2019265

[12]

Marshall Hampton, Anders Nedergaard Jensen. Finiteness of relative equilibria in the planar generalized $N$-body problem with fixed subconfigurations. Journal of Geometric Mechanics, 2015, 7 (1) : 35-42. doi: 10.3934/jgm.2015.7.35

[13]

Alain Albouy, Holger R. Dullin. Relative equilibria of the 3-body problem in $ \mathbb{R}^4 $. Journal of Geometric Mechanics, 2020, 12 (3) : 323-341. doi: 10.3934/jgm.2020012

[14]

Björn Augner, Birgit Jacob. Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems. Evolution Equations & Control Theory, 2014, 3 (2) : 207-229. doi: 10.3934/eect.2014.3.207

[15]

Mark A. Pinsky, Alexandr A. Zevin. Stability criteria for linear Hamiltonian systems with uncertain bounded periodic coefficients. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 243-250. doi: 10.3934/dcds.2005.12.243

[16]

Vladimir Răsvan. On the central stability zone for linear discrete-time Hamiltonian systems. Conference Publications, 2003, 2003 (Special) : 734-741. doi: 10.3934/proc.2003.2003.734

[17]

Fuzhong Cong, Jialin Hong, Hongtian Li. Quasi-effective stability for nearly integrable Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 67-80. doi: 10.3934/dcdsb.2016.21.67

[18]

Luca Biasco, Luigi Chierchia. On the stability of some properly--degenerate Hamiltonian systems with two degrees of freedom. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 233-262. doi: 10.3934/dcds.2003.9.233

[19]

Jianhe Shen, Shuhui Chen, Kechang Lin. Study on the stability and bifurcations of limit cycles in higher-dimensional nonlinear autonomous systems. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 231-254. doi: 10.3934/dcdsb.2011.15.231

[20]

Thorsten Hüls. A model function for non-autonomous bifurcations of maps. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 351-363. doi: 10.3934/dcdsb.2007.7.351

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (56)
  • HTML views (120)
  • Cited by (0)

Other articles
by authors

[Back to Top]