
-
Previous Article
Getting into the vortex: On the contributions of james montaldi
- JGM Home
- This Issue
-
Next Article
Characterization of toric systems via transport costs
Angular momentum coupling, Dirac oscillators, and quantum band rearrangements in the presence of momentum reversal symmetries
1. | Department of Applied Mathematics and Physics, Kyoto University, Kyoto 606, Japan |
2. | Department of Physics, Université du Littoral——Côte d'Opale, 59140 Dunkerque, France |
We investigate the elementary rearrangements of energy bands in slow-fast one-parameter families of systems whose fast subsystem possesses a half-integer spin. Beginning with a simple case without any time-reversal symmetries, we analyze and compare increasingly sophisticated model Hamiltonians with these symmetries. The models are inspired by the time-reversal modification of the Berry phase setup which uses a family of quadratic spin-quadrupole Hamiltonians of Mead [Phys. Rev. Lett. 59, 161–164 (1987)] and Avron et al [Commun. Math. Phys. 124(4), 595–627 (1989)]. An explicit correspondence between the typical quantum energy level patterns in the energy band rearrangements of the finite particle systems with compact slow phase space and those of the Dirac oscillator is found in the limit of linearization near the conical degeneracy point of the semi-quantum eigenvalues.
References:
[1] |
V. I. Arnold, Remarks on eigenvalues and eigenvectors of Hermitian matrices, Berry phase, adiabatic connections and quantum Hall effect, Select. Math., 1 (1995), 1–19.
doi: 10.1007/BF01614072. |
[2] |
M. F. Atiyah, V. K. Patodi and I. M. Singer, Spectral asymmetry and Riemannian geometry. I, Math. Proc. Cambridge Phil. Soc., 77 (1975), 49–69.
doi: 10.1017/S0305004100049410. |
[3] |
M. F. Atiyah, V. K. Patodi and I. M. Singer, Spectral asymmetry and Riemannian geometry. Ⅱ, Math. Proc. Cambridge Phil. Soc., 78 (1975), 405–432.
doi: 10.1017/S0305004100051872. |
[4] |
M. F. Atiyah, V. K. Patodi and I. M. Singer, Spectral asymmetry and Riemannian geometry. Ⅲ, Math. Proc. Cambridge Phil. Soc., 79 (1976), 71–99.
doi: 10.1017/S0305004100052105. |
[5] |
J. E. Avron, L. Sadun, J. Segert and B. Simon, Topological invariants in Fermi systems with time-reversal invariance, Phys. Rev. Lett., 61 (1988), 1329–1332.
doi: 10.1103/PhysRevLett.61.1329. |
[6] |
J. E. Avron, L. Sadun, J. Segert and B. Simon, Chern numbers, quaternions, and Berry's phases in Fermi systems, Commun. Math. Phys., 124 (1989), 595–627.
doi: 10.1007/BF01218452. |
[7] |
M. Baake, A brief guide to reversing and extended symmetries of dynamical systems, in Ergodic Theory and Dynamical Systems in Their Interactions with Arithmetics and Combinatorics (eds. S. Ferenczi, J. Kulaga-Przymus and M. Lemanczyk), Lect. Notes Math., 2213, Springer-Verlag, Berlin, Heidelberg, 2018, 35–40. |
[8] |
N. Berglund and B. Gentz, Deterministic slow-fast systems, in Noise-induced Phenomena in Slow-fast Dynamical Systems, Probability and its Applications, Springer Verlag, London, UK, 2006, 17–49. |
[9] |
B. A. Bernevig and T. L. Hughes, Topological Insulators and Topological Superconductors, Princeton Univ. Press, Princeton, NJ, 2013.
doi: 10.1515/9781400846733.![]() ![]() ![]() |
[10] |
M. V. Berry, Quantal phase factors accompanying adiabatic changes, Proc. Royal Soc. Lond. A, 392 (1984), 45–57.
doi: 10.1098/rspa.1984.0023. |
[11] |
F. Faure and B. I. Zhilinskií, Topological Chern indices in molecular spectra, Phys. Rev. Lett., 85 (2000), 960–963.
doi: 10.1103/PhysRevLett.85.960. |
[12] |
F. Faure and B. I. Zhilinskií, Topological properties of the Born–Oppenheimer approximation and implications for the exact spectrum, Lett. Math. Phys., 55 (2001), 239–247.
doi: 10.1023/A:1010912815438. |
[13] |
F. Faure and B. I. Zhilinskií, Qualitative features of intra-molecular dynamics. What can be learned from symmetry and topology, Acta Appl. Math., 70 (2002), 265–282.
doi: 10.1023/A:1013986518747. |
[14] |
F. Faure and B. I. Zhilinskií, Topologically coupled energy bands in molecules, Phys. Lett. A, 302 (2002), 985–988.
doi: 10.1016/S0375-9601(02)01171-4. |
[15] |
B. Fedosov, Deformation Quantization and Index Theory, Academie Verlag, Berlin, 1996. |
[16] |
D. Fontanari and D. A. Sadovskií, Coherent states for the quantum complete rigid rotor, J. Geom. Phys., 129 (2018), 70–89.
doi: 10.1016/j.geomphys.2018.02.021. |
[17] |
J. N. Fuchs, F. Piéchon, M. O. Goerbig and G. Montambaux, Topological Berry phase and semiclassical quantization of cyclotron orbits for two dimensional electrons in coupled band models, Eur. Phys. J. B, 77 (2010), 351–362.
doi: 10.1140/epjb/e2010-10584-y. |
[18] |
F. D. M. Haldane, Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the "parity anomaly", Phys. Rev. Lett., 61 (1988), 2015–2018.
doi: 10.1103/PhysRevLett.61.1029. |
[19] |
G. Herzberg and H. C. Longuet-Higgins, Intersection of potential energy surfaces in polyatomic molecules, Discuss. Faraday Soc., 35 (1963), 77–82.
doi: 10.1039/df9633500077. |
[20] |
T. Holstein and H. Primakoff, Field dependence of the intrinsic domain magnetization of a ferromagnet, Phys. Rev., 58 (1940), 1098–1113.
doi: 10.1103/PhysRev.58.1098. |
[21] |
T. Iwai and B. I. Zhilinskií, Energy bands: Chern numbers and symmetry, Ann. Phys. (NY), 326 (2011), 3013–3066.
doi: 10.1016/j.aop.2011.07.002. |
[22] |
T. Iwai and B. I. Zhilinskií, Qualitative feature of the rearrangement of molecular energy spectra from a wall-crossing perspective, Phys. Lett. A, 377 (2013), 2481–2486.
doi: 10.1016/j.physleta.2013.07.043. |
[23] |
T. Iwai and B. I. Zhilinskií, Local description of band rearrangements. Comparison of semi-quantum and full quantum approach, Acta Appl. Math., 137 (2015), 97–121.
doi: 10.1007/s10440-014-9992-y. |
[24] |
T. Iwai and B. I. Zhilinskií, Band rearrangement through the 2D-Dirac equation: Comparing the APS and the chiral bag boundary conditions, Indagationes Math., 27 (2016), 1081–1106.
doi: 10.1016/j.indag.2015.11.010. |
[25] |
T. Iwai and B. I. Zhilinskií, Chern number modification in crossing the boundary between different band structures: Three-band model with cubic symmetry, Rev. Math. Phys., 29 (2017), 1–91.
doi: 10.1142/S0129055X17500040. |
[26] |
M. Kohmoto, Topological invariant and the quantization of the Hall conductance, Ann. Phys., 160 (1985), 343–354.
doi: 10.1016/0003-4916(85)90148-4. |
[27] |
H. A. Kramers,
Théorie générale de la rotation paramagnétique dans les cristaux, Proc. Konink. Akad. Wetensch., 33 (1930), 959-972.
|
[28] |
J. S. W. Lamb, Reversing symmetries in dynamical systems, J. Phys. A, 25 (1992), 925–937.
doi: 10.1088/0305-4470/25/4/028. |
[29] |
J. S. Lamb and J. A. Roberts, Time-reversal symmetry in dynamical systems: A survey, Physica D, 112 (1998), 1–39.
doi: 10.1016/S0167-2789(97)00199-1. |
[30] |
Y. Lee Loh and M. Kim, Visualizing spin states using the spin coherent state representation, Am. J. Phys., 83 (2015), 30–35.
doi: 10.1119/1.4898595. |
[31] |
C. A. Mead, Molecular Kramers degeneracy and non-Abelian adiabatic phase factors, Phys. Rev. Lett., 59 (1987), 161–164.
doi: 10.1103/PhysRevLett.59.161. |
[32] |
C. A. Mead and D. G. Truhlar, On the determination of Born–Oppenheimer nuclear motion wave functions including complications due to conical intersections and identical nuclei, J. Chem. Phys., 70 (1979), 2284–2296.
doi: 10.1063/1.437734. |
[33] |
M. Moshinsky and A. Szczepaniak, The Dirac oscillator, J. Phys. A: Math. Gen., 22 (1989), L817–L819.
doi: 10.1088/0305-4470/22/17/002. |
[34] |
A. I. Neishtadt and A. A. Vasiliev, Destruction of adiabatic invariance at resonances in slow-fast Hamiltonian systems, Nucl. Instr. Meth. A, 561 (2006), 158–165.
doi: 10.1007/978-1-4020-6964-2_3. |
[35] |
A. I. Neishtadt, Averaging method and adiabatic invariants, in Hamiltonian Dynamical Systems and Applications (ed. W. Craig), NATO science for peace and security series B: Physics and Biophysics, Springer Science, Netherlands, 2008, 53–66.
doi: 10.1007/978-1-4020-6964-2_3. |
[36] |
V. B. Pavlov-Verevkin, D. A. Sadovskií and B. I. Zhilinskií, On the dynamical meaning of the diabolic points, Europhysics Letters, 6 (1988), 573–8.
doi: 10.1209/0295-5075/6/7/001. |
[37] |
D. A. Sadovskií and B. I. Zhilinskií, Monodromy, diabolic points, and angular momentum coupling, Phys. Lett. A, 256 (1999), 235–44.
doi: 10.1016/S0375-9601(99)00229-7. |
[38] |
B. Simon, Holonomy, the quantum adiabatic theorem, and Berry's phase, Phys. Rev. Lett., 51 (1983), 2167–2170.
doi: 10.1103/PhysRevLett.51.2167. |
[39] |
D. J. Thouless, Topological Quantum Numbers in Nonrelativistic Physics, World Scientific, Singapore, 1998.
doi: 10.1142/3318. |
[40] |
D. J. Thouless, M. Kohmoto, M. P. Nightingale and M. den Nijs, Quantized Hall conductance in a two-dimensional periodic potential, Phys. Rev. Lett., 49 (1982), 405–408.
doi: 10.1103/PhysRevLett.49.405. |
[41] |
J. von Neumann and E. P. Wigner,
Über merkwürdige diskrete Eigenwerte. Über das Verhalten von Eigenwerten bei adiabatischen Prozessen, Physicalische Z., 30 (1929), 467-470.
|
[42] |
E. P. Wigner,
Über die Operation der Zeitumkehr in der Quantenmechanik, Nachr. Akad. Ges. Wiss. Göttingen, 31 (1932), 546-559.
doi: 10.1007/978-3-662-02781-3_15. |
[43] |
F. Wilczek and A. Shapere, Geometric Phases in Physics, Advanced Series in Mathematical Physics, 5, World Scientific, 1989.
doi: 10.1142/0613. |
[44] |
R. N. Zare, Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics, Wiley, New York, 1988.
doi: 10.1063/1.2811251. |
[45] |
W.-M. Zhang, D. H. Feng and R. Gilmore, Coherent states: Theory and some applications, Rev. Mod. Phys., 62 (1990), 867–927.
doi: 10.1103/RevModPhys.62.867. |
show all references
References:
[1] |
V. I. Arnold, Remarks on eigenvalues and eigenvectors of Hermitian matrices, Berry phase, adiabatic connections and quantum Hall effect, Select. Math., 1 (1995), 1–19.
doi: 10.1007/BF01614072. |
[2] |
M. F. Atiyah, V. K. Patodi and I. M. Singer, Spectral asymmetry and Riemannian geometry. I, Math. Proc. Cambridge Phil. Soc., 77 (1975), 49–69.
doi: 10.1017/S0305004100049410. |
[3] |
M. F. Atiyah, V. K. Patodi and I. M. Singer, Spectral asymmetry and Riemannian geometry. Ⅱ, Math. Proc. Cambridge Phil. Soc., 78 (1975), 405–432.
doi: 10.1017/S0305004100051872. |
[4] |
M. F. Atiyah, V. K. Patodi and I. M. Singer, Spectral asymmetry and Riemannian geometry. Ⅲ, Math. Proc. Cambridge Phil. Soc., 79 (1976), 71–99.
doi: 10.1017/S0305004100052105. |
[5] |
J. E. Avron, L. Sadun, J. Segert and B. Simon, Topological invariants in Fermi systems with time-reversal invariance, Phys. Rev. Lett., 61 (1988), 1329–1332.
doi: 10.1103/PhysRevLett.61.1329. |
[6] |
J. E. Avron, L. Sadun, J. Segert and B. Simon, Chern numbers, quaternions, and Berry's phases in Fermi systems, Commun. Math. Phys., 124 (1989), 595–627.
doi: 10.1007/BF01218452. |
[7] |
M. Baake, A brief guide to reversing and extended symmetries of dynamical systems, in Ergodic Theory and Dynamical Systems in Their Interactions with Arithmetics and Combinatorics (eds. S. Ferenczi, J. Kulaga-Przymus and M. Lemanczyk), Lect. Notes Math., 2213, Springer-Verlag, Berlin, Heidelberg, 2018, 35–40. |
[8] |
N. Berglund and B. Gentz, Deterministic slow-fast systems, in Noise-induced Phenomena in Slow-fast Dynamical Systems, Probability and its Applications, Springer Verlag, London, UK, 2006, 17–49. |
[9] |
B. A. Bernevig and T. L. Hughes, Topological Insulators and Topological Superconductors, Princeton Univ. Press, Princeton, NJ, 2013.
doi: 10.1515/9781400846733.![]() ![]() ![]() |
[10] |
M. V. Berry, Quantal phase factors accompanying adiabatic changes, Proc. Royal Soc. Lond. A, 392 (1984), 45–57.
doi: 10.1098/rspa.1984.0023. |
[11] |
F. Faure and B. I. Zhilinskií, Topological Chern indices in molecular spectra, Phys. Rev. Lett., 85 (2000), 960–963.
doi: 10.1103/PhysRevLett.85.960. |
[12] |
F. Faure and B. I. Zhilinskií, Topological properties of the Born–Oppenheimer approximation and implications for the exact spectrum, Lett. Math. Phys., 55 (2001), 239–247.
doi: 10.1023/A:1010912815438. |
[13] |
F. Faure and B. I. Zhilinskií, Qualitative features of intra-molecular dynamics. What can be learned from symmetry and topology, Acta Appl. Math., 70 (2002), 265–282.
doi: 10.1023/A:1013986518747. |
[14] |
F. Faure and B. I. Zhilinskií, Topologically coupled energy bands in molecules, Phys. Lett. A, 302 (2002), 985–988.
doi: 10.1016/S0375-9601(02)01171-4. |
[15] |
B. Fedosov, Deformation Quantization and Index Theory, Academie Verlag, Berlin, 1996. |
[16] |
D. Fontanari and D. A. Sadovskií, Coherent states for the quantum complete rigid rotor, J. Geom. Phys., 129 (2018), 70–89.
doi: 10.1016/j.geomphys.2018.02.021. |
[17] |
J. N. Fuchs, F. Piéchon, M. O. Goerbig and G. Montambaux, Topological Berry phase and semiclassical quantization of cyclotron orbits for two dimensional electrons in coupled band models, Eur. Phys. J. B, 77 (2010), 351–362.
doi: 10.1140/epjb/e2010-10584-y. |
[18] |
F. D. M. Haldane, Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the "parity anomaly", Phys. Rev. Lett., 61 (1988), 2015–2018.
doi: 10.1103/PhysRevLett.61.1029. |
[19] |
G. Herzberg and H. C. Longuet-Higgins, Intersection of potential energy surfaces in polyatomic molecules, Discuss. Faraday Soc., 35 (1963), 77–82.
doi: 10.1039/df9633500077. |
[20] |
T. Holstein and H. Primakoff, Field dependence of the intrinsic domain magnetization of a ferromagnet, Phys. Rev., 58 (1940), 1098–1113.
doi: 10.1103/PhysRev.58.1098. |
[21] |
T. Iwai and B. I. Zhilinskií, Energy bands: Chern numbers and symmetry, Ann. Phys. (NY), 326 (2011), 3013–3066.
doi: 10.1016/j.aop.2011.07.002. |
[22] |
T. Iwai and B. I. Zhilinskií, Qualitative feature of the rearrangement of molecular energy spectra from a wall-crossing perspective, Phys. Lett. A, 377 (2013), 2481–2486.
doi: 10.1016/j.physleta.2013.07.043. |
[23] |
T. Iwai and B. I. Zhilinskií, Local description of band rearrangements. Comparison of semi-quantum and full quantum approach, Acta Appl. Math., 137 (2015), 97–121.
doi: 10.1007/s10440-014-9992-y. |
[24] |
T. Iwai and B. I. Zhilinskií, Band rearrangement through the 2D-Dirac equation: Comparing the APS and the chiral bag boundary conditions, Indagationes Math., 27 (2016), 1081–1106.
doi: 10.1016/j.indag.2015.11.010. |
[25] |
T. Iwai and B. I. Zhilinskií, Chern number modification in crossing the boundary between different band structures: Three-band model with cubic symmetry, Rev. Math. Phys., 29 (2017), 1–91.
doi: 10.1142/S0129055X17500040. |
[26] |
M. Kohmoto, Topological invariant and the quantization of the Hall conductance, Ann. Phys., 160 (1985), 343–354.
doi: 10.1016/0003-4916(85)90148-4. |
[27] |
H. A. Kramers,
Théorie générale de la rotation paramagnétique dans les cristaux, Proc. Konink. Akad. Wetensch., 33 (1930), 959-972.
|
[28] |
J. S. W. Lamb, Reversing symmetries in dynamical systems, J. Phys. A, 25 (1992), 925–937.
doi: 10.1088/0305-4470/25/4/028. |
[29] |
J. S. Lamb and J. A. Roberts, Time-reversal symmetry in dynamical systems: A survey, Physica D, 112 (1998), 1–39.
doi: 10.1016/S0167-2789(97)00199-1. |
[30] |
Y. Lee Loh and M. Kim, Visualizing spin states using the spin coherent state representation, Am. J. Phys., 83 (2015), 30–35.
doi: 10.1119/1.4898595. |
[31] |
C. A. Mead, Molecular Kramers degeneracy and non-Abelian adiabatic phase factors, Phys. Rev. Lett., 59 (1987), 161–164.
doi: 10.1103/PhysRevLett.59.161. |
[32] |
C. A. Mead and D. G. Truhlar, On the determination of Born–Oppenheimer nuclear motion wave functions including complications due to conical intersections and identical nuclei, J. Chem. Phys., 70 (1979), 2284–2296.
doi: 10.1063/1.437734. |
[33] |
M. Moshinsky and A. Szczepaniak, The Dirac oscillator, J. Phys. A: Math. Gen., 22 (1989), L817–L819.
doi: 10.1088/0305-4470/22/17/002. |
[34] |
A. I. Neishtadt and A. A. Vasiliev, Destruction of adiabatic invariance at resonances in slow-fast Hamiltonian systems, Nucl. Instr. Meth. A, 561 (2006), 158–165.
doi: 10.1007/978-1-4020-6964-2_3. |
[35] |
A. I. Neishtadt, Averaging method and adiabatic invariants, in Hamiltonian Dynamical Systems and Applications (ed. W. Craig), NATO science for peace and security series B: Physics and Biophysics, Springer Science, Netherlands, 2008, 53–66.
doi: 10.1007/978-1-4020-6964-2_3. |
[36] |
V. B. Pavlov-Verevkin, D. A. Sadovskií and B. I. Zhilinskií, On the dynamical meaning of the diabolic points, Europhysics Letters, 6 (1988), 573–8.
doi: 10.1209/0295-5075/6/7/001. |
[37] |
D. A. Sadovskií and B. I. Zhilinskií, Monodromy, diabolic points, and angular momentum coupling, Phys. Lett. A, 256 (1999), 235–44.
doi: 10.1016/S0375-9601(99)00229-7. |
[38] |
B. Simon, Holonomy, the quantum adiabatic theorem, and Berry's phase, Phys. Rev. Lett., 51 (1983), 2167–2170.
doi: 10.1103/PhysRevLett.51.2167. |
[39] |
D. J. Thouless, Topological Quantum Numbers in Nonrelativistic Physics, World Scientific, Singapore, 1998.
doi: 10.1142/3318. |
[40] |
D. J. Thouless, M. Kohmoto, M. P. Nightingale and M. den Nijs, Quantized Hall conductance in a two-dimensional periodic potential, Phys. Rev. Lett., 49 (1982), 405–408.
doi: 10.1103/PhysRevLett.49.405. |
[41] |
J. von Neumann and E. P. Wigner,
Über merkwürdige diskrete Eigenwerte. Über das Verhalten von Eigenwerten bei adiabatischen Prozessen, Physicalische Z., 30 (1929), 467-470.
|
[42] |
E. P. Wigner,
Über die Operation der Zeitumkehr in der Quantenmechanik, Nachr. Akad. Ges. Wiss. Göttingen, 31 (1932), 546-559.
doi: 10.1007/978-3-662-02781-3_15. |
[43] |
F. Wilczek and A. Shapere, Geometric Phases in Physics, Advanced Series in Mathematical Physics, 5, World Scientific, 1989.
doi: 10.1142/0613. |
[44] |
R. N. Zare, Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics, Wiley, New York, 1988.
doi: 10.1063/1.2811251. |
[45] |
W.-M. Zhang, D. H. Feng and R. Gilmore, Coherent states: Theory and some applications, Rev. Mod. Phys., 62 (1990), 867–927.
doi: 10.1103/RevModPhys.62.867. |












[1] |
Ruikuan Liu, Tian Ma, Shouhong Wang, Jiayan Yang. Thermodynamical potentials of classical and quantum systems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1411-1448. doi: 10.3934/dcdsb.2018214 |
[2] |
Harald Markum, Rainer Pullirsch. Classical and quantum chaos in fundamental field theories. Conference Publications, 2003, 2003 (Special) : 596-603. doi: 10.3934/proc.2003.2003.596 |
[3] |
Cesare Tronci. Momentum maps for mixed states in quantum and classical mechanics. Journal of Geometric Mechanics, 2019, 11 (4) : 639-656. doi: 10.3934/jgm.2019032 |
[4] |
Håkon Hoel, Anders Szepessy. Classical Langevin dynamics derived from quantum mechanics. Discrete and Continuous Dynamical Systems - B, 2020, 25 (10) : 4001-4038. doi: 10.3934/dcdsb.2020135 |
[5] |
Ugo Boscain, Thomas Chambrion, Grégoire Charlot. Nonisotropic 3-level quantum systems: complete solutions for minimum time and minimum energy. Discrete and Continuous Dynamical Systems - B, 2005, 5 (4) : 957-990. doi: 10.3934/dcdsb.2005.5.957 |
[6] |
Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete and Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451 |
[7] |
Giuseppe Marmo, Giuseppe Morandi, Narasimhaiengar Mukunda. The Hamilton-Jacobi theory and the analogy between classical and quantum mechanics. Journal of Geometric Mechanics, 2009, 1 (3) : 317-355. doi: 10.3934/jgm.2009.1.317 |
[8] |
Roberta Bosi. Classical limit for linear and nonlinear quantum Fokker-Planck systems. Communications on Pure and Applied Analysis, 2009, 8 (3) : 845-870. doi: 10.3934/cpaa.2009.8.845 |
[9] |
Harald Friedrich. Semiclassical and large quantum number limits of the Schrödinger equation. Conference Publications, 2003, 2003 (Special) : 288-294. doi: 10.3934/proc.2003.2003.288 |
[10] |
Nicolas Augier, Ugo Boscain, Mario Sigalotti. Semi-conical eigenvalue intersections and the ensemble controllability problem for quantum systems. Mathematical Control and Related Fields, 2020, 10 (4) : 877-911. doi: 10.3934/mcrf.2020023 |
[11] |
Li Chen, Xiu-Qing Chen, Ansgar Jüngel. Semiclassical limit in a simplified quantum energy-transport model for semiconductors. Kinetic and Related Models, 2011, 4 (4) : 1049-1062. doi: 10.3934/krm.2011.4.1049 |
[12] |
Helmut Kröger. From quantum action to quantum chaos. Conference Publications, 2003, 2003 (Special) : 492-500. doi: 10.3934/proc.2003.2003.492 |
[13] |
Alberto Ibort, Alberto López-Yela. Quantum tomography and the quantum Radon transform. Inverse Problems and Imaging, 2021, 15 (5) : 893-928. doi: 10.3934/ipi.2021021 |
[14] |
Claude Bardos, Nicolas Besse. The Cauchy problem for the Vlasov-Dirac-Benney equation and related issues in fluid mechanics and semi-classical limits. Kinetic and Related Models, 2013, 6 (4) : 893-917. doi: 10.3934/krm.2013.6.893 |
[15] |
Yanheng Ding, Xiaojing Dong, Qi Guo. On multiplicity of semi-classical solutions to nonlinear Dirac equations of space-dimension $ n $. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4105-4123. doi: 10.3934/dcds.2021030 |
[16] |
Bernard Bonnard, Jean-Baptiste Caillau, Olivier Cots. Energy minimization in two-level dissipative quantum control: Th e integrable case. Conference Publications, 2011, 2011 (Special) : 198-208. doi: 10.3934/proc.2011.2011.198 |
[17] |
Paolo Antonelli, Pierangelo Marcati. Quantum hydrodynamics with nonlinear interactions. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 1-13. doi: 10.3934/dcdss.2016.9.1 |
[18] |
Luiza H. F. Andrade, Rui F. Vigelis, Charles C. Cavalcante. A generalized quantum relative entropy. Advances in Mathematics of Communications, 2020, 14 (3) : 413-422. doi: 10.3934/amc.2020063 |
[19] |
Gabriel Rivière. Remarks on quantum ergodicity. Journal of Modern Dynamics, 2013, 7 (1) : 119-133. doi: 10.3934/jmd.2013.7.119 |
[20] |
Sergei Avdonin, Pavel Kurasov. Inverse problems for quantum trees. Inverse Problems and Imaging, 2008, 2 (1) : 1-21. doi: 10.3934/ipi.2008.2.1 |
2020 Impact Factor: 0.857
Tools
Metrics
Other articles
by authors
[Back to Top]