doi: 10.3934/jgm.2020021

Angular momentum coupling, Dirac oscillators, and quantum band rearrangements in the presence of momentum reversal symmetries

1. 

Department of Applied Mathematics and Physics, Kyoto University, Kyoto 606, Japan

2. 

Department of Physics, Université du Littoral——Côte d'Opale, 59140 Dunkerque, France

* Corresponding author: Boris I. Zhilinskií

special issue in honor of James Montaldi, edited by Luis García-Naranjo

Received  September 2019 Revised  February 2020 Published  July 2020

We investigate the elementary rearrangements of energy bands in slow-fast one-parameter families of systems whose fast subsystem possesses a half-integer spin. Beginning with a simple case without any time-reversal symmetries, we analyze and compare increasingly sophisticated model Hamiltonians with these symmetries. The models are inspired by the time-reversal modification of the Berry phase setup which uses a family of quadratic spin-quadrupole Hamiltonians of Mead [Phys. Rev. Lett. 59, 161–164 (1987)] and Avron et al [Commun. Math. Phys. 124(4), 595–627 (1989)]. An explicit correspondence between the typical quantum energy level patterns in the energy band rearrangements of the finite particle systems with compact slow phase space and those of the Dirac oscillator is found in the limit of linearization near the conical degeneracy point of the semi-quantum eigenvalues.

Citation: Toshihiro Iwai, Dmitrií A. Sadovskií, Boris I. Zhilinskií. Angular momentum coupling, Dirac oscillators, and quantum band rearrangements in the presence of momentum reversal symmetries. Journal of Geometric Mechanics, doi: 10.3934/jgm.2020021
References:
[1]

V. I. Arnold, Remarks on eigenvalues and eigenvectors of Hermitian matrices, Berry phase, adiabatic connections and quantum Hall effect, Select. Math., 1 (1995), 1–19. doi: 10.1007/BF01614072.  Google Scholar

[2]

M. F. Atiyah, V. K. Patodi and I. M. Singer, Spectral asymmetry and Riemannian geometry. I, Math. Proc. Cambridge Phil. Soc., 77 (1975), 49–69. doi: 10.1017/S0305004100049410.  Google Scholar

[3]

M. F. Atiyah, V. K. Patodi and I. M. Singer, Spectral asymmetry and Riemannian geometry. Ⅱ, Math. Proc. Cambridge Phil. Soc., 78 (1975), 405–432. doi: 10.1017/S0305004100051872.  Google Scholar

[4]

M. F. Atiyah, V. K. Patodi and I. M. Singer, Spectral asymmetry and Riemannian geometry. Ⅲ, Math. Proc. Cambridge Phil. Soc., 79 (1976), 71–99. doi: 10.1017/S0305004100052105.  Google Scholar

[5]

J. E. Avron, L. Sadun, J. Segert and B. Simon, Topological invariants in Fermi systems with time-reversal invariance, Phys. Rev. Lett., 61 (1988), 1329–1332. doi: 10.1103/PhysRevLett.61.1329.  Google Scholar

[6]

J. E. Avron, L. Sadun, J. Segert and B. Simon, Chern numbers, quaternions, and Berry's phases in Fermi systems, Commun. Math. Phys., 124 (1989), 595–627. doi: 10.1007/BF01218452.  Google Scholar

[7]

M. Baake, A brief guide to reversing and extended symmetries of dynamical systems, in Ergodic Theory and Dynamical Systems in Their Interactions with Arithmetics and Combinatorics (eds. S. Ferenczi, J. Kulaga-Przymus and M. Lemanczyk), Lect. Notes Math., 2213, Springer-Verlag, Berlin, Heidelberg, 2018, 35–40.  Google Scholar

[8]

N. Berglund and B. Gentz, Deterministic slow-fast systems, in Noise-induced Phenomena in Slow-fast Dynamical Systems, Probability and its Applications, Springer Verlag, London, UK, 2006, 17–49.  Google Scholar

[9] B. A. Bernevig and T. L. Hughes, Topological Insulators and Topological Superconductors, Princeton Univ. Press, Princeton, NJ, 2013.  doi: 10.1515/9781400846733.  Google Scholar
[10]

M. V. Berry, Quantal phase factors accompanying adiabatic changes, Proc. Royal Soc. Lond. A, 392 (1984), 45–57. doi: 10.1098/rspa.1984.0023.  Google Scholar

[11]

F. Faure and B. I. Zhilinskií, Topological Chern indices in molecular spectra, Phys. Rev. Lett., 85 (2000), 960–963. doi: 10.1103/PhysRevLett.85.960.  Google Scholar

[12]

F. Faure and B. I. Zhilinskií, Topological properties of the Born–Oppenheimer approximation and implications for the exact spectrum, Lett. Math. Phys., 55 (2001), 239–247. doi: 10.1023/A:1010912815438.  Google Scholar

[13]

F. Faure and B. I. Zhilinskií, Qualitative features of intra-molecular dynamics. What can be learned from symmetry and topology, Acta Appl. Math., 70 (2002), 265–282. doi: 10.1023/A:1013986518747.  Google Scholar

[14]

F. Faure and B. I. Zhilinskií, Topologically coupled energy bands in molecules, Phys. Lett. A, 302 (2002), 985–988. doi: 10.1016/S0375-9601(02)01171-4.  Google Scholar

[15]

B. Fedosov, Deformation Quantization and Index Theory, Academie Verlag, Berlin, 1996.  Google Scholar

[16]

D. Fontanari and D. A. Sadovskií, Coherent states for the quantum complete rigid rotor, J. Geom. Phys., 129 (2018), 70–89. doi: 10.1016/j.geomphys.2018.02.021.  Google Scholar

[17]

J. N. Fuchs, F. Piéchon, M. O. Goerbig and G. Montambaux, Topological Berry phase and semiclassical quantization of cyclotron orbits for two dimensional electrons in coupled band models, Eur. Phys. J. B, 77 (2010), 351–362. doi: 10.1140/epjb/e2010-10584-y.  Google Scholar

[18]

F. D. M. Haldane, Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the "parity anomaly", Phys. Rev. Lett., 61 (1988), 2015–2018. doi: 10.1103/PhysRevLett.61.1029.  Google Scholar

[19]

G. Herzberg and H. C. Longuet-Higgins, Intersection of potential energy surfaces in polyatomic molecules, Discuss. Faraday Soc., 35 (1963), 77–82. doi: 10.1039/df9633500077.  Google Scholar

[20]

T. Holstein and H. Primakoff, Field dependence of the intrinsic domain magnetization of a ferromagnet, Phys. Rev., 58 (1940), 1098–1113. doi: 10.1103/PhysRev.58.1098.  Google Scholar

[21]

T. Iwai and B. I. Zhilinskií, Energy bands: Chern numbers and symmetry, Ann. Phys. (NY), 326 (2011), 3013–3066. doi: 10.1016/j.aop.2011.07.002.  Google Scholar

[22]

T. Iwai and B. I. Zhilinskií, Qualitative feature of the rearrangement of molecular energy spectra from a wall-crossing perspective, Phys. Lett. A, 377 (2013), 2481–2486. doi: 10.1016/j.physleta.2013.07.043.  Google Scholar

[23]

T. Iwai and B. I. Zhilinskií, Local description of band rearrangements. Comparison of semi-quantum and full quantum approach, Acta Appl. Math., 137 (2015), 97–121. doi: 10.1007/s10440-014-9992-y.  Google Scholar

[24]

T. Iwai and B. I. Zhilinskií, Band rearrangement through the 2D-Dirac equation: Comparing the APS and the chiral bag boundary conditions, Indagationes Math., 27 (2016), 1081–1106. doi: 10.1016/j.indag.2015.11.010.  Google Scholar

[25]

T. Iwai and B. I. Zhilinskií, Chern number modification in crossing the boundary between different band structures: Three-band model with cubic symmetry, Rev. Math. Phys., 29 (2017), 1–91. doi: 10.1142/S0129055X17500040.  Google Scholar

[26]

M. Kohmoto, Topological invariant and the quantization of the Hall conductance, Ann. Phys., 160 (1985), 343–354. doi: 10.1016/0003-4916(85)90148-4.  Google Scholar

[27]

H. A. Kramers, Théorie générale de la rotation paramagnétique dans les cristaux, Proc. Konink. Akad. Wetensch., 33 (1930), 959-972.   Google Scholar

[28]

J. S. W. Lamb, Reversing symmetries in dynamical systems, J. Phys. A, 25 (1992), 925–937. doi: 10.1088/0305-4470/25/4/028.  Google Scholar

[29]

J. S. Lamb and J. A. Roberts, Time-reversal symmetry in dynamical systems: A survey, Physica D, 112 (1998), 1–39. doi: 10.1016/S0167-2789(97)00199-1.  Google Scholar

[30]

Y. Lee Loh and M. Kim, Visualizing spin states using the spin coherent state representation, Am. J. Phys., 83 (2015), 30–35. doi: 10.1119/1.4898595.  Google Scholar

[31]

C. A. Mead, Molecular Kramers degeneracy and non-Abelian adiabatic phase factors, Phys. Rev. Lett., 59 (1987), 161–164. doi: 10.1103/PhysRevLett.59.161.  Google Scholar

[32]

C. A. Mead and D. G. Truhlar, On the determination of Born–Oppenheimer nuclear motion wave functions including complications due to conical intersections and identical nuclei, J. Chem. Phys., 70 (1979), 2284–2296. doi: 10.1063/1.437734.  Google Scholar

[33]

M. Moshinsky and A. Szczepaniak, The Dirac oscillator, J. Phys. A: Math. Gen., 22 (1989), L817–L819. doi: 10.1088/0305-4470/22/17/002.  Google Scholar

[34]

A. I. Neishtadt and A. A. Vasiliev, Destruction of adiabatic invariance at resonances in slow-fast Hamiltonian systems, Nucl. Instr. Meth. A, 561 (2006), 158–165. doi: 10.1007/978-1-4020-6964-2_3.  Google Scholar

[35]

A. I. Neishtadt, Averaging method and adiabatic invariants, in Hamiltonian Dynamical Systems and Applications (ed. W. Craig), NATO science for peace and security series B: Physics and Biophysics, Springer Science, Netherlands, 2008, 53–66. doi: 10.1007/978-1-4020-6964-2_3.  Google Scholar

[36]

V. B. Pavlov-Verevkin, D. A. Sadovskií and B. I. Zhilinskií, On the dynamical meaning of the diabolic points, Europhysics Letters, 6 (1988), 573–8. doi: 10.1209/0295-5075/6/7/001.  Google Scholar

[37]

D. A. Sadovskií and B. I. Zhilinskií, Monodromy, diabolic points, and angular momentum coupling, Phys. Lett. A, 256 (1999), 235–44. doi: 10.1016/S0375-9601(99)00229-7.  Google Scholar

[38]

B. Simon, Holonomy, the quantum adiabatic theorem, and Berry's phase, Phys. Rev. Lett., 51 (1983), 2167–2170. doi: 10.1103/PhysRevLett.51.2167.  Google Scholar

[39]

D. J. Thouless, Topological Quantum Numbers in Nonrelativistic Physics, World Scientific, Singapore, 1998. doi: 10.1142/3318.  Google Scholar

[40]

D. J. Thouless, M. Kohmoto, M. P. Nightingale and M. den Nijs, Quantized Hall conductance in a two-dimensional periodic potential, Phys. Rev. Lett., 49 (1982), 405–408. doi: 10.1103/PhysRevLett.49.405.  Google Scholar

[41]

J. von Neumann and E. P. Wigner, Über merkwürdige diskrete Eigenwerte. Über das Verhalten von Eigenwerten bei adiabatischen Prozessen, Physicalische Z., 30 (1929), 467-470.   Google Scholar

[42]

E. P. Wigner, Über die Operation der Zeitumkehr in der Quantenmechanik, Nachr. Akad. Ges. Wiss. Göttingen, 31 (1932), 546-559.  doi: 10.1007/978-3-662-02781-3_15.  Google Scholar

[43]

F. Wilczek and A. Shapere, Geometric Phases in Physics, Advanced Series in Mathematical Physics, 5, World Scientific, 1989. doi: 10.1142/0613.  Google Scholar

[44]

R. N. Zare, Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics, Wiley, New York, 1988. doi: 10.1063/1.2811251.  Google Scholar

[45]

W.-M. Zhang, D. H. Feng and R. Gilmore, Coherent states: Theory and some applications, Rev. Mod. Phys., 62 (1990), 867–927. doi: 10.1103/RevModPhys.62.867.  Google Scholar

show all references

References:
[1]

V. I. Arnold, Remarks on eigenvalues and eigenvectors of Hermitian matrices, Berry phase, adiabatic connections and quantum Hall effect, Select. Math., 1 (1995), 1–19. doi: 10.1007/BF01614072.  Google Scholar

[2]

M. F. Atiyah, V. K. Patodi and I. M. Singer, Spectral asymmetry and Riemannian geometry. I, Math. Proc. Cambridge Phil. Soc., 77 (1975), 49–69. doi: 10.1017/S0305004100049410.  Google Scholar

[3]

M. F. Atiyah, V. K. Patodi and I. M. Singer, Spectral asymmetry and Riemannian geometry. Ⅱ, Math. Proc. Cambridge Phil. Soc., 78 (1975), 405–432. doi: 10.1017/S0305004100051872.  Google Scholar

[4]

M. F. Atiyah, V. K. Patodi and I. M. Singer, Spectral asymmetry and Riemannian geometry. Ⅲ, Math. Proc. Cambridge Phil. Soc., 79 (1976), 71–99. doi: 10.1017/S0305004100052105.  Google Scholar

[5]

J. E. Avron, L. Sadun, J. Segert and B. Simon, Topological invariants in Fermi systems with time-reversal invariance, Phys. Rev. Lett., 61 (1988), 1329–1332. doi: 10.1103/PhysRevLett.61.1329.  Google Scholar

[6]

J. E. Avron, L. Sadun, J. Segert and B. Simon, Chern numbers, quaternions, and Berry's phases in Fermi systems, Commun. Math. Phys., 124 (1989), 595–627. doi: 10.1007/BF01218452.  Google Scholar

[7]

M. Baake, A brief guide to reversing and extended symmetries of dynamical systems, in Ergodic Theory and Dynamical Systems in Their Interactions with Arithmetics and Combinatorics (eds. S. Ferenczi, J. Kulaga-Przymus and M. Lemanczyk), Lect. Notes Math., 2213, Springer-Verlag, Berlin, Heidelberg, 2018, 35–40.  Google Scholar

[8]

N. Berglund and B. Gentz, Deterministic slow-fast systems, in Noise-induced Phenomena in Slow-fast Dynamical Systems, Probability and its Applications, Springer Verlag, London, UK, 2006, 17–49.  Google Scholar

[9] B. A. Bernevig and T. L. Hughes, Topological Insulators and Topological Superconductors, Princeton Univ. Press, Princeton, NJ, 2013.  doi: 10.1515/9781400846733.  Google Scholar
[10]

M. V. Berry, Quantal phase factors accompanying adiabatic changes, Proc. Royal Soc. Lond. A, 392 (1984), 45–57. doi: 10.1098/rspa.1984.0023.  Google Scholar

[11]

F. Faure and B. I. Zhilinskií, Topological Chern indices in molecular spectra, Phys. Rev. Lett., 85 (2000), 960–963. doi: 10.1103/PhysRevLett.85.960.  Google Scholar

[12]

F. Faure and B. I. Zhilinskií, Topological properties of the Born–Oppenheimer approximation and implications for the exact spectrum, Lett. Math. Phys., 55 (2001), 239–247. doi: 10.1023/A:1010912815438.  Google Scholar

[13]

F. Faure and B. I. Zhilinskií, Qualitative features of intra-molecular dynamics. What can be learned from symmetry and topology, Acta Appl. Math., 70 (2002), 265–282. doi: 10.1023/A:1013986518747.  Google Scholar

[14]

F. Faure and B. I. Zhilinskií, Topologically coupled energy bands in molecules, Phys. Lett. A, 302 (2002), 985–988. doi: 10.1016/S0375-9601(02)01171-4.  Google Scholar

[15]

B. Fedosov, Deformation Quantization and Index Theory, Academie Verlag, Berlin, 1996.  Google Scholar

[16]

D. Fontanari and D. A. Sadovskií, Coherent states for the quantum complete rigid rotor, J. Geom. Phys., 129 (2018), 70–89. doi: 10.1016/j.geomphys.2018.02.021.  Google Scholar

[17]

J. N. Fuchs, F. Piéchon, M. O. Goerbig and G. Montambaux, Topological Berry phase and semiclassical quantization of cyclotron orbits for two dimensional electrons in coupled band models, Eur. Phys. J. B, 77 (2010), 351–362. doi: 10.1140/epjb/e2010-10584-y.  Google Scholar

[18]

F. D. M. Haldane, Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the "parity anomaly", Phys. Rev. Lett., 61 (1988), 2015–2018. doi: 10.1103/PhysRevLett.61.1029.  Google Scholar

[19]

G. Herzberg and H. C. Longuet-Higgins, Intersection of potential energy surfaces in polyatomic molecules, Discuss. Faraday Soc., 35 (1963), 77–82. doi: 10.1039/df9633500077.  Google Scholar

[20]

T. Holstein and H. Primakoff, Field dependence of the intrinsic domain magnetization of a ferromagnet, Phys. Rev., 58 (1940), 1098–1113. doi: 10.1103/PhysRev.58.1098.  Google Scholar

[21]

T. Iwai and B. I. Zhilinskií, Energy bands: Chern numbers and symmetry, Ann. Phys. (NY), 326 (2011), 3013–3066. doi: 10.1016/j.aop.2011.07.002.  Google Scholar

[22]

T. Iwai and B. I. Zhilinskií, Qualitative feature of the rearrangement of molecular energy spectra from a wall-crossing perspective, Phys. Lett. A, 377 (2013), 2481–2486. doi: 10.1016/j.physleta.2013.07.043.  Google Scholar

[23]

T. Iwai and B. I. Zhilinskií, Local description of band rearrangements. Comparison of semi-quantum and full quantum approach, Acta Appl. Math., 137 (2015), 97–121. doi: 10.1007/s10440-014-9992-y.  Google Scholar

[24]

T. Iwai and B. I. Zhilinskií, Band rearrangement through the 2D-Dirac equation: Comparing the APS and the chiral bag boundary conditions, Indagationes Math., 27 (2016), 1081–1106. doi: 10.1016/j.indag.2015.11.010.  Google Scholar

[25]

T. Iwai and B. I. Zhilinskií, Chern number modification in crossing the boundary between different band structures: Three-band model with cubic symmetry, Rev. Math. Phys., 29 (2017), 1–91. doi: 10.1142/S0129055X17500040.  Google Scholar

[26]

M. Kohmoto, Topological invariant and the quantization of the Hall conductance, Ann. Phys., 160 (1985), 343–354. doi: 10.1016/0003-4916(85)90148-4.  Google Scholar

[27]

H. A. Kramers, Théorie générale de la rotation paramagnétique dans les cristaux, Proc. Konink. Akad. Wetensch., 33 (1930), 959-972.   Google Scholar

[28]

J. S. W. Lamb, Reversing symmetries in dynamical systems, J. Phys. A, 25 (1992), 925–937. doi: 10.1088/0305-4470/25/4/028.  Google Scholar

[29]

J. S. Lamb and J. A. Roberts, Time-reversal symmetry in dynamical systems: A survey, Physica D, 112 (1998), 1–39. doi: 10.1016/S0167-2789(97)00199-1.  Google Scholar

[30]

Y. Lee Loh and M. Kim, Visualizing spin states using the spin coherent state representation, Am. J. Phys., 83 (2015), 30–35. doi: 10.1119/1.4898595.  Google Scholar

[31]

C. A. Mead, Molecular Kramers degeneracy and non-Abelian adiabatic phase factors, Phys. Rev. Lett., 59 (1987), 161–164. doi: 10.1103/PhysRevLett.59.161.  Google Scholar

[32]

C. A. Mead and D. G. Truhlar, On the determination of Born–Oppenheimer nuclear motion wave functions including complications due to conical intersections and identical nuclei, J. Chem. Phys., 70 (1979), 2284–2296. doi: 10.1063/1.437734.  Google Scholar

[33]

M. Moshinsky and A. Szczepaniak, The Dirac oscillator, J. Phys. A: Math. Gen., 22 (1989), L817–L819. doi: 10.1088/0305-4470/22/17/002.  Google Scholar

[34]

A. I. Neishtadt and A. A. Vasiliev, Destruction of adiabatic invariance at resonances in slow-fast Hamiltonian systems, Nucl. Instr. Meth. A, 561 (2006), 158–165. doi: 10.1007/978-1-4020-6964-2_3.  Google Scholar

[35]

A. I. Neishtadt, Averaging method and adiabatic invariants, in Hamiltonian Dynamical Systems and Applications (ed. W. Craig), NATO science for peace and security series B: Physics and Biophysics, Springer Science, Netherlands, 2008, 53–66. doi: 10.1007/978-1-4020-6964-2_3.  Google Scholar

[36]

V. B. Pavlov-Verevkin, D. A. Sadovskií and B. I. Zhilinskií, On the dynamical meaning of the diabolic points, Europhysics Letters, 6 (1988), 573–8. doi: 10.1209/0295-5075/6/7/001.  Google Scholar

[37]

D. A. Sadovskií and B. I. Zhilinskií, Monodromy, diabolic points, and angular momentum coupling, Phys. Lett. A, 256 (1999), 235–44. doi: 10.1016/S0375-9601(99)00229-7.  Google Scholar

[38]

B. Simon, Holonomy, the quantum adiabatic theorem, and Berry's phase, Phys. Rev. Lett., 51 (1983), 2167–2170. doi: 10.1103/PhysRevLett.51.2167.  Google Scholar

[39]

D. J. Thouless, Topological Quantum Numbers in Nonrelativistic Physics, World Scientific, Singapore, 1998. doi: 10.1142/3318.  Google Scholar

[40]

D. J. Thouless, M. Kohmoto, M. P. Nightingale and M. den Nijs, Quantized Hall conductance in a two-dimensional periodic potential, Phys. Rev. Lett., 49 (1982), 405–408. doi: 10.1103/PhysRevLett.49.405.  Google Scholar

[41]

J. von Neumann and E. P. Wigner, Über merkwürdige diskrete Eigenwerte. Über das Verhalten von Eigenwerten bei adiabatischen Prozessen, Physicalische Z., 30 (1929), 467-470.   Google Scholar

[42]

E. P. Wigner, Über die Operation der Zeitumkehr in der Quantenmechanik, Nachr. Akad. Ges. Wiss. Göttingen, 31 (1932), 546-559.  doi: 10.1007/978-3-662-02781-3_15.  Google Scholar

[43]

F. Wilczek and A. Shapere, Geometric Phases in Physics, Advanced Series in Mathematical Physics, 5, World Scientific, 1989. doi: 10.1142/0613.  Google Scholar

[44]

R. N. Zare, Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics, Wiley, New York, 1988. doi: 10.1063/1.2811251.  Google Scholar

[45]

W.-M. Zhang, D. H. Feng and R. Gilmore, Coherent states: Theory and some applications, Rev. Mod. Phys., 62 (1990), 867–927. doi: 10.1103/RevModPhys.62.867.  Google Scholar

Figure 1.  Spectrum of the Dirac oscillator with $ S = \frac12 $ as function of formal control parameter $ \mu $. The energies of the bulk states (blue and green) and of the edge state (red) are given by (13)
Figure 2.  Correlation diagram of the deformed spin-orbit system with spin $ S = \frac12 $ and $ N\gg S $ as function of formal coupling control parameter $ \gamma $. Bold solid lines represent the energies of the bulk states (blue and green) and the edge state (red). When the value of $ \gamma $ varies, one single state (edge) changes bands, while all other states (bulk) remain within the same band
Figure 3.  Spectrum of the $ N,S = \frac12 $ system (two coupled angular momenta of conserved lengths) with Hamiltonian $ \hat{H}_\gamma $ (22) as function of parameter $ \gamma $ (scaled magnetic field strength). Green and red solid lines represent the "bulk" states of the lower and upper band (multiplet); blue solid line marks the energy of the single "edge" state redistributed at $ \gamma = \frac12 $
Figure 4.  Correlation diagram of the deformed spin-orbit system with Hamiltonian (29), spin $ S = \frac12 $, and $ N\gg S $ as function of formal coupling control parameter $ \gamma $. In comparison to the diagram in fig. 4, the domain of $ \gamma $ is extended from $ [0,1] $ to $ [-1,1] $; the $ \gamma>0 $ parts of both diagrams are identical. The value $ 0 $ of $ \gamma $ corresponds to the uncoupled system (two bands of equal number of states), while the values $ -1 $ and $ +1 $ correspond to the coupled spin-orbit system with negative and positive coupling Hamiltonian (2). Bold solid lines represent the energies of the bulk states (blue and green) and the edge states (red). When the value of $ \gamma $ varies, two single states (edge) change bands, while all other states (bulk) remain within the same bands
Figure 5.  Correlation diagram of the spin-orbit system with the conjectured ${\mathcal{T}}$-equivariant deformation, spin $ S = \frac12 $, and $ N\gg S $ as function of formal coupling control parameter $ \alpha $. In comparison to the diagram in fig. 2, the $ [-\frac12,\frac12] $ part of the domain of $ \gamma $ is shrunk to $ 0 $, while the endpoints of the two diagrams are identical. There is no uncoupled system, the values $ -1 $ and $ +1 $ of $ \alpha $ correspond to the coupled spin-orbit system with isotropic negative and positive coupling Hamiltonian (2). Bold solid lines represent the energies of the bulk states (blue and green) and one Kramers doublet edge state (red)
Figure 6.  Spectrum of the $ N,S = \frac12 $ system (two coupled angular momenta of conserved lengths) with ${\mathcal{T}}$-invariant Hamiltonian (31) as function of scaled spin-orbit coupling parameter $ \alpha $. Each solid line represents a Kramers doublet quantum state. Energies of the bulk states (red and green solid lines) are given by (34), while the solid blue line represents the edge state. Dotted lines indicate critical values of the semi-quantum energies (33)
Figure 7.  Spectrum of the system with Hamiltonian (36b) obtained as linearization of ${\mathcal{T}}$-reversal ${\boldsymbol{{N}}}{\boldsymbol{{S}}}$, $ S = \frac12 $ Hamiltonian (32) for coupling parameter $ \alpha\in[-1,1] $. Compare to fig. 1 and 6. The bulk state energies (red and green lines) are given by (39)
Figure 8.  Correlation diagram for the quadratic dynamical spin-quadrupole system in sec. 2.3.2 with the conjectured $ {\mathcal{T}}_S\times {\mathcal{T}}_N $-equivariant deformation in sec. 5, spin $ S = \frac32 $, and $ N\gg S $ as function of formal control parameter $ \alpha $ of the isotropic quadrupolar coupling term (18). The values $ \pm1 $ of $ \alpha $ correspond to the coupled system with Hamiltonian (18) times $ \pm1 $. Bold solid lines represent the energies of the bulk states (blue and green) and of the two Kramers doublet edge states (red) exchanged in opposite directions. Unlike the indices $ c_1 $ in fig. 2 and 4 which can be computed in the standard way for the $ \Lambda_{1,2} $ bundles on $ {\mathbb{S}}^2_N $ (see sec. 1.2 and 2.1), the values of $ c_1 $ in this diagram are conjectured so that they agree with the number of states in each band. See text for more detail
Figure 9.  Spectrum of the Kramers degenerate $ {\mathcal{T}}_N\times {\mathcal{T}}_S $-invariant axially symmetric system of coupled angular momenta ${\boldsymbol{{S}}}$ (fast) and ${\boldsymbol{{N}}}$ (slow) of conserved lengths $ S = \frac32 $ and $ N = 5 $ with Hamiltonian (40) as function of the "quaternionic" spin-orbit coupling parameter $ \alpha_0 $. Solid color lines represent quantum Kramers doublet states. Specifically, the bulk state energies are depicted in blue and green, while red and purple correspond to the two edge state doublets. For the end values $ \pm1 $ of $ \alpha_0 $, the levels within each band reassemble visibly into multiplets with conserved length $ J $ of the total angular momentum $ {\boldsymbol{{N}}}+{\boldsymbol{{S}}} $ and the respective values of $ J $ are marked along the left and right vertical axes, cf. sec. 2.3.3. The edge states are distinguished by the conserved value of $ J_1 $ displayed near the $ \alpha_0 = -1 $ end of the plot. The boundaries of the lightly shaded semi-quantum energy domains (gray lines) are given by (42) where $ N_1 $ takes one of the critical values $ \{N,0\} $ and with $ N $ replaced by $ N_{\rm classical} = N+\frac12 $
Figure 10.  Joint spectrum of the ${{\varepsilon}}$-term of the quadratic spin-orbit Hamiltonian (40) and $ \hat{J}_1 $. The values of spin $ S = \frac32 $ and slow angular momentum $ N = 5 $ correspond to fig. 9. Bold solid bars represent the bulk states (blue and green) and two Kramers doublet edge states (red). Above the energy-momentum diagram, we show the composition of the two multiplets in each superband of the spectrum of the isotropic term in sec. 2.3.3. Red arrows indicate which of the subbands takes in the particular edge states, see proposition 1
Figure 11.  Circles $ C_{\rho} $ and $ C_r $ of respective radii $ \rho $ and $ r $ form the boundary of the annulus $ W_{\rho,r} $, and $ C_{\rho} $ is also the boundary of disk $ D_{\rho} $
Figure 12.  Base spaces $ {\mathbb{R}}^2_\mu $ and $ {\mathbb{S}}^2_r $ of the $ \Lambda_\pm $ and $ \Delta_\pm $ eigenvector bundles, respectively, in the parameter space $ {\mathbb{R}}^3 $ of the Dirac oscillator (sec. 2.2). The spaces intersect on the $ {\mathbb{S}}^1 $ circle $ C_{\!\rho} $ involved in the Chern index calculus, see sec. A.4 for details, and compare to fig 11
[1]

Ruikuan Liu, Tian Ma, Shouhong Wang, Jiayan Yang. Thermodynamical potentials of classical and quantum systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1411-1448. doi: 10.3934/dcdsb.2018214

[2]

Harald Markum, Rainer Pullirsch. Classical and quantum chaos in fundamental field theories. Conference Publications, 2003, 2003 (Special) : 596-603. doi: 10.3934/proc.2003.2003.596

[3]

Cesare Tronci. Momentum maps for mixed states in quantum and classical mechanics. Journal of Geometric Mechanics, 2019, 11 (4) : 639-656. doi: 10.3934/jgm.2019032

[4]

Håkon Hoel, Anders Szepessy. Classical Langevin dynamics derived from quantum mechanics. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020135

[5]

Ugo Boscain, Thomas Chambrion, Grégoire Charlot. Nonisotropic 3-level quantum systems: complete solutions for minimum time and minimum energy. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 957-990. doi: 10.3934/dcdsb.2005.5.957

[6]

Giuseppe Marmo, Giuseppe Morandi, Narasimhaiengar Mukunda. The Hamilton-Jacobi theory and the analogy between classical and quantum mechanics. Journal of Geometric Mechanics, 2009, 1 (3) : 317-355. doi: 10.3934/jgm.2009.1.317

[7]

Roberta Bosi. Classical limit for linear and nonlinear quantum Fokker-Planck systems. Communications on Pure & Applied Analysis, 2009, 8 (3) : 845-870. doi: 10.3934/cpaa.2009.8.845

[8]

Harald Friedrich. Semiclassical and large quantum number limits of the Schrödinger equation. Conference Publications, 2003, 2003 (Special) : 288-294. doi: 10.3934/proc.2003.2003.288

[9]

Nicolas Augier, Ugo Boscain, Mario Sigalotti. Semi-conical eigenvalue intersections and the ensemble controllability problem for quantum systems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020023

[10]

Li Chen, Xiu-Qing Chen, Ansgar Jüngel. Semiclassical limit in a simplified quantum energy-transport model for semiconductors. Kinetic & Related Models, 2011, 4 (4) : 1049-1062. doi: 10.3934/krm.2011.4.1049

[11]

Helmut Kröger. From quantum action to quantum chaos. Conference Publications, 2003, 2003 (Special) : 492-500. doi: 10.3934/proc.2003.2003.492

[12]

Claude Bardos, Nicolas Besse. The Cauchy problem for the Vlasov-Dirac-Benney equation and related issues in fluid mechanics and semi-classical limits. Kinetic & Related Models, 2013, 6 (4) : 893-917. doi: 10.3934/krm.2013.6.893

[13]

Bernard Bonnard, Jean-Baptiste Caillau, Olivier Cots. Energy minimization in two-level dissipative quantum control: Th e integrable case. Conference Publications, 2011, 2011 (Special) : 198-208. doi: 10.3934/proc.2011.2011.198

[14]

Paolo Antonelli, Pierangelo Marcati. Quantum hydrodynamics with nonlinear interactions. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 1-13. doi: 10.3934/dcdss.2016.9.1

[15]

Luiza H. F. Andrade, Rui F. Vigelis, Charles C. Cavalcante. A generalized quantum relative entropy. Advances in Mathematics of Communications, 2020, 14 (3) : 413-422. doi: 10.3934/amc.2020063

[16]

Gabriel Rivière. Remarks on quantum ergodicity. Journal of Modern Dynamics, 2013, 7 (1) : 119-133. doi: 10.3934/jmd.2013.7.119

[17]

Sergei Avdonin, Pavel Kurasov. Inverse problems for quantum trees. Inverse Problems & Imaging, 2008, 2 (1) : 1-21. doi: 10.3934/ipi.2008.2.1

[18]

Dmitry Jakobson. On quantum limits on flat tori. Electronic Research Announcements, 1995, 1: 80-86.

[19]

Gang Tian. Bott-Chern forms and geometric stability. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 211-220. doi: 10.3934/dcds.2000.6.211

[20]

William Clark, Anthony Bloch, Leonardo Colombo, Patrick Rooney. Time-minimum control of quantum purity for 2-level Lindblad equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (4) : 1061-1073. doi: 10.3934/dcdss.2020063

2019 Impact Factor: 0.649

Article outline

Figures and Tables

[Back to Top]