December  2020, 12(4): 563-583. doi: 10.3934/jgm.2020024

Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems

Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, Vernadskogo Ave., 101/1, Moscow, 119526, Russia

Received  April 2018 Revised  July 2020 Published  September 2020

Fund Project: This work was done on the theme of the State Task No. AAAA-A20-120011690135-5

A generalization of the Hamilton-Jacobi theory to arbitrary dynamical systems, including non-Hamiltonian ones, is considered. The generalized Hamilton-Jacobi theory is constructed as a theory of ensemble of identical systems moving in the configuration space and described by the continual equation of motion and the continuity equation. For Hamiltonian systems, the usual Hamilton-Jacobi equations naturally follow from this theory. The proposed formulation of the Hamilton-Jacobi theory, as the theory of ensemble, allows interpreting in a natural way the transition from quantum mechanics in the Schrödinger form to classical mechanics.

Citation: Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024
References:
[1]

G. Auletta, Foundations and Interpretation of Quantum Mechanics, World Scientific Publishing Co., Inc., River Edge, NJ, 2000. doi: 10.1142/9789810248215.  Google Scholar

[2]

D. Bohm, A suggested interpretation of the quantum theory in terms of "hidden variables", Ⅰ, Physical Review, 85 (1952), 166-179.  doi: 10.1103/PhysRev.85.166.  Google Scholar

[3]

D. Bohm, A suggested interpretation of the quantum theory in terms of "hidden variables", Ⅱ, Physical Review, 85 (1952), 180-193.  doi: 10.1103/PhysRev.85.180.  Google Scholar

[4]

D. Dürr and S. Teufel, Bohmian Mechanics: The Physics and Mathematics of Quantum Theory, Springer-Verlag Berlin Heidelberg, 2009. doi: 10.1007/b99978.  Google Scholar

[5]

H. Goldstein, C. P. Poole and J. L. Safko, Classical Mechanics, 3$^nd$ edition, Addison Wesley, 2001. Google Scholar

[6]

P. Holland, Computing the wavefunction from trajectories: Particle and wave pictures in quantum mechanics and their relation, Annals of Physics, 315 (2005), 505-531.  doi: 10.1016/j.aop.2004.09.008.  Google Scholar

[7]

H. A. Kramers, Quantum Mechanics, North-Holland Publishing Company, Amsterdam, 1957.  Google Scholar

[8]

L. D. Landau and E. M. Lifshitz, Mechanics, Vol. 1, 3$^nd$ edition, Butterworth-Heinemann, 1976. Google Scholar

[9]

L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory, Vol. 3. Translated from the Russian by J. B. Sykes and J. S. Bell. Addison-Wesley Series in Advanced Physics. Pergamon Press Ltd., London-Paris; for U.S.A. and Canada: Addison-Wesley Publishing Co., Inc., Reading, Mass; 1958.  Google Scholar

[10]

L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Vol. 6, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1959.  Google Scholar

[11]

L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, Vol. 2, 4$^nd$ edition, Butterworth-Heinemann, 1975.  Google Scholar

[12]

A. J. Lichtenberg and M. A. Lieberman, Regular and Stochastic Motion, Springer-Verlag New York Inc., 1983. doi: 10.1007/978-1-4757-4257-2.  Google Scholar

[13]

E. Madelung, Quantentheorie in hydrodynamischer form (Quantum theory in hydrodynamic form), Z Phys, 40 (1926), 322–326. In German. Google Scholar

[14]

A. Messiah, Quantum Mechanics, Dover Publications Inc. New York, 1961.  Google Scholar

[15] R. Omnès, The Interpretation of Quantum Mechanics, Princeton University Press, Princeton, N.J., 1994.   Google Scholar
[16]

S. A. Rashkovskiy, Eulerian and Newtonian dynamics of quantum particles, Progress of Theoretical and Experimental Physics, 2013 (2013), 063A02. doi: 10.1093/ptep/ptt036.  Google Scholar

[17]

R. Schiller, Quasi-classical theory of the nonspinning electron, Physical Review, 125 (1962), 1100-1108.  doi: 10.1103/PhysRev.125.1100.  Google Scholar

[18]

R. Schiller, Quasi-classical theory of the spinning electron, Physical Review, 125 (1962), 1116-1123.  doi: 10.1103/PhysRev.125.1116.  Google Scholar

[19]

A. M. Scarfone, Canonical quantization of nonlinear many-body systems, Physical Review E, 71 (2005), 051103, 15pp. doi: 10.1103/PhysRevE.71.051103.  Google Scholar

[20]

V. V. Vedenyapin and N. N. Fimin, Eulerian and Newtonian dynamics of quantum particles, Doklady Mathematics, 91 (2015), 154-157.  doi: 10.1134/s1064562415020131.  Google Scholar

show all references

References:
[1]

G. Auletta, Foundations and Interpretation of Quantum Mechanics, World Scientific Publishing Co., Inc., River Edge, NJ, 2000. doi: 10.1142/9789810248215.  Google Scholar

[2]

D. Bohm, A suggested interpretation of the quantum theory in terms of "hidden variables", Ⅰ, Physical Review, 85 (1952), 166-179.  doi: 10.1103/PhysRev.85.166.  Google Scholar

[3]

D. Bohm, A suggested interpretation of the quantum theory in terms of "hidden variables", Ⅱ, Physical Review, 85 (1952), 180-193.  doi: 10.1103/PhysRev.85.180.  Google Scholar

[4]

D. Dürr and S. Teufel, Bohmian Mechanics: The Physics and Mathematics of Quantum Theory, Springer-Verlag Berlin Heidelberg, 2009. doi: 10.1007/b99978.  Google Scholar

[5]

H. Goldstein, C. P. Poole and J. L. Safko, Classical Mechanics, 3$^nd$ edition, Addison Wesley, 2001. Google Scholar

[6]

P. Holland, Computing the wavefunction from trajectories: Particle and wave pictures in quantum mechanics and their relation, Annals of Physics, 315 (2005), 505-531.  doi: 10.1016/j.aop.2004.09.008.  Google Scholar

[7]

H. A. Kramers, Quantum Mechanics, North-Holland Publishing Company, Amsterdam, 1957.  Google Scholar

[8]

L. D. Landau and E. M. Lifshitz, Mechanics, Vol. 1, 3$^nd$ edition, Butterworth-Heinemann, 1976. Google Scholar

[9]

L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory, Vol. 3. Translated from the Russian by J. B. Sykes and J. S. Bell. Addison-Wesley Series in Advanced Physics. Pergamon Press Ltd., London-Paris; for U.S.A. and Canada: Addison-Wesley Publishing Co., Inc., Reading, Mass; 1958.  Google Scholar

[10]

L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Vol. 6, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1959.  Google Scholar

[11]

L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, Vol. 2, 4$^nd$ edition, Butterworth-Heinemann, 1975.  Google Scholar

[12]

A. J. Lichtenberg and M. A. Lieberman, Regular and Stochastic Motion, Springer-Verlag New York Inc., 1983. doi: 10.1007/978-1-4757-4257-2.  Google Scholar

[13]

E. Madelung, Quantentheorie in hydrodynamischer form (Quantum theory in hydrodynamic form), Z Phys, 40 (1926), 322–326. In German. Google Scholar

[14]

A. Messiah, Quantum Mechanics, Dover Publications Inc. New York, 1961.  Google Scholar

[15] R. Omnès, The Interpretation of Quantum Mechanics, Princeton University Press, Princeton, N.J., 1994.   Google Scholar
[16]

S. A. Rashkovskiy, Eulerian and Newtonian dynamics of quantum particles, Progress of Theoretical and Experimental Physics, 2013 (2013), 063A02. doi: 10.1093/ptep/ptt036.  Google Scholar

[17]

R. Schiller, Quasi-classical theory of the nonspinning electron, Physical Review, 125 (1962), 1100-1108.  doi: 10.1103/PhysRev.125.1100.  Google Scholar

[18]

R. Schiller, Quasi-classical theory of the spinning electron, Physical Review, 125 (1962), 1116-1123.  doi: 10.1103/PhysRev.125.1116.  Google Scholar

[19]

A. M. Scarfone, Canonical quantization of nonlinear many-body systems, Physical Review E, 71 (2005), 051103, 15pp. doi: 10.1103/PhysRevE.71.051103.  Google Scholar

[20]

V. V. Vedenyapin and N. N. Fimin, Eulerian and Newtonian dynamics of quantum particles, Doklady Mathematics, 91 (2015), 154-157.  doi: 10.1134/s1064562415020131.  Google Scholar

[1]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[2]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[3]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

[4]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[5]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[6]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[7]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[8]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[9]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[10]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020350

[11]

Håkon Hoel, Gaukhar Shaimerdenova, Raúl Tempone. Multilevel Ensemble Kalman Filtering based on a sample average of independent EnKF estimators. Foundations of Data Science, 2020  doi: 10.3934/fods.2020017

[12]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

[13]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, 2021, 20 (1) : 427-448. doi: 10.3934/cpaa.2020275

[14]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[15]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[16]

Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254

[17]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[18]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[19]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[20]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

2019 Impact Factor: 0.649

Article outline

[Back to Top]