[1]
|
Y. Bi and Y. Sheng, On higher analogues of Courant algebroids, Sci. China Math., 54 (2011), 437-447.
doi: 10.1007/s11425-010-4142-0.
|
[2]
|
Y. Bi and Y. Sheng, Dirac structures for higher analogues of Courant algebroids, Int. J. Geom. Methods Mod. Phys., 12 (2015), 1550010, 13 pp.
doi: 10.1142/S0219887815500103.
|
[3]
|
Y. Bi, L. Vitagliano and T. Zhang, Higher omni-Lie algebroids, J. Lie Theory, 29 (2019), 881-899.
|
[4]
|
P. Bouwknegt and B. Jurčo, AKSZ construction of topological open $p$-brane action and Nambu brackets, Rev. Math. Phys., 25 (2013), 1330004, 31 pp.
doi: 10.1142/S0129055X13300045.
|
[5]
|
H. Bursztyn and A. Cabrera, Multiplicative forms at the infinitesimal level, Math. Ann., 353 (2012), 663-705.
doi: 10.1007/s00208-011-0697-5.
|
[6]
|
H. Bursztyn, N. Martinez Alba and R. Rubio, On higher Dirac structures, Int. Math. Res. Not. IMRN, 2019 (2019), 1503-1542.
doi: 10.1093/imrn/rnx163.
|
[7]
|
Z. Chen and Z. Liu, Omni-Lie algebroids, J. Geom. Phys., 60 (2010), 799-808.
doi: 10.1016/j.geomphys.2010.01.007.
|
[8]
|
Z. Chen, Z. Liu and Y. Sheng, $E$-Courant algebroids, Int. Math. Res. Not. IMRN, 2010 (2010), 4334-4376.
doi: 10.1093/imrn/rnq053.
|
[9]
|
Z. Chen, Z. Liu and Y. Sheng, Dirac structures of omni-Lie algebroids, Internat. J. Math., 22 (2011), 1163-1185.
doi: 10.1142/S0129167X11007215.
|
[10]
|
M. Crainic and I. Moerdijk, Deformations of Lie brackets: Cohomological aspects, J. Eur. Math. Soc. (JEMS), 10 (2008), 1037-1059.
doi: 10.4171/JEMS/139.
|
[11]
|
M. Cueca, The geometry of graded cotangent bundles, preprint, arXiv: 1905.13245.
|
[12]
|
Y. Daletskii and L. Takhtajan, Leibniz and Lie algebra structures for Nambu algebra, Lett. Math. Phys., 39 (1997), 127-141.
doi: 10.1023/A:1007316732705.
|
[13]
|
J. A. de Azc$\rm\acute{a}$rraga and J. M. Izquierdo, $n$-ary algebras: a review with applications, J. Phys. A: Math. Theor., 43 (2010), 293001.
|
[14]
|
V. T. Filippov, $n$-Lie algebras, Sibirsk. Mat. Zh., 26 (1985), 126-140.
|
[15]
|
J. Grabowski, Brackets, Int. J. Geom. Methods Mod. Phys., 10 (2013), 1360001, 45 pp.
doi: 10.1142/S0219887813600013.
|
[16]
|
J. Grabowski, D. Khudaverdyan and N. Poncin, The supergeometry of Loday algebroids, J. Geom. Mech., 5 (2013), 185-213.
doi: 10.3934/jgm.2013.5.185.
|
[17]
|
J. Grabowski and G. Marmo, On Filippov algebroids and multiplicative Nambu-Poisson structures, Differential Geom. Appl., 12 (2000), 35-50.
doi: 10.1016/S0926-2245(99)00042-X.
|
[18]
|
J. Grabowski and M. Rotkiewicz, Higher vector bundles and multi-graded symplectic manifolds, J. Geom. Phys., 59 (2009), 1285-1305.
doi: 10.1016/j.geomphys.2009.06.009.
|
[19]
|
M. Grutzmann and T. Strobl, General Yang-Mills type gauge theories for $p$-form gauge fields: From physics-based ideas to a mathematical framework or from Bianchi identities to twisted Courant algebroids, Int. J. Geom. Methods Mod. Phys., 12 (2015), 1550009, 80 pp.
doi: 10.1142/S0219887815500097.
|
[20]
|
Y. Hagiwara, Nambu-Dirac manifolds, J. Phys. A, 35 (2002), 1263-1281.
doi: 10.1088/0305-4470/35/5/310.
|
[21]
|
Y. Hagiwara, Nambu-Jacobi structures and Jacobi algebroids, J. Phys. A, 37 (2004), 6713-6725.
doi: 10.1088/0305-4470/37/26/008.
|
[22]
|
C. M. Hull, Generalised geometry for M-theory, J. High Energy Phys., 2007 (2007), 079, 31 pp.
doi: 10.1088/1126-6708/2007/07/079.
|
[23]
|
R. Ibánez, M de León, J. C. Marrero and E. Padrón, Leibniz algebroid associated with a Nambu-Poisson structure, J. Phys. A, 32 (1999), 8129-8144.
doi: 10.1088/0305-4470/32/46/310.
|
[24]
|
R. Ibánez, B. Lopez, J. C. Marrero and E. Padrón, Matched pairs of Leibniz algebroids, Nambu-Jacobi structures and modular class, C. R. Acad. Sci., Paris Sér I Math., 333 (2001), 861-866.
doi: 10.1016/S0764-4442(01)02150-4.
|
[25]
|
D. Iglesias-Ponte, C. Laurent-Gengoux and P. Xu, Universal lifting theorem and quasi-Poisson groupoids, J. Eur. Math. Soc. (JEMS), 14 (2012), 681-731.
doi: 10.4171/JEMS/315.
|
[26]
|
D. Iglesias-Ponte and A. Wade, Contact manifolds and generalized complex structures, J. Geom. Phys., 53 (2005), 249-258.
doi: 10.1016/j.geomphys.2004.06.006.
|
[27]
|
M. K. Kinyon and A. Weinstein, Leibniz algebras, Courant algebroids, and multiplications on reductive homogeneous spaces, Amer. J. Math., 123 (2001), 525-550.
doi: 10.1353/ajm.2001.0017.
|
[28]
|
Y. Kosmann-Schwarzbach, Courant algebroids. A short history, SIGMA Symmetry Integrability Geom. Methods Appl., 9 (2013), 014, 8 pp.
doi: 10.3842/SIGMA.2013.014.
|
[29]
|
P. P. La Pastina and L. Vitagliano, Deformations of linear Lie brackets, Pacific J. Math., 303 (2019), 265-298.
doi: 10.2140/pjm.2019.303.265.
|
[30]
|
H. Lang, Y. Sheng and A. Wade, VB-Courant algebroids, $E$-Courant algebroids and generalized geometry, Canad. Math. Bull., 61 (2018), 588-607.
doi: 10.4153/CMB-2017-079-7.
|
[31]
|
J. Liu, Y. Sheng and C. Wang, Omni $n$-Lie algebras and linearization of higher analogues of Courant algebroids, Int. J. Geom. Methods Mod. Phys., 14 (2017), 1750113, 18 pp.
doi: 10.1142/S0219887817501134.
|
[32]
|
Z. Liu, A. Weinstein and P. Xu, Manin triples for Lie bialgebroids, J. Differential Geom., 45 (1997), 547-574.
doi: 10.4310/jdg/1214459842.
|
[33]
|
G. Marmo, G. Vilasi and A. M. Vinogradov, The local structure of $n$-Poisson and $n$-Jacobi manifolds, J. Geom. Phys., 25 (1998), 141-182.
doi: 10.1016/S0393-0440(97)00057-0.
|
[34]
|
K. Mikami and T. Mizutani, Foliations associated with Nambu-Jacobi structures, Tokyo J. Math., 28 (2005), 33-54.
doi: 10.3836/tjm/1244208277.
|
[35]
|
Y. Sheng, On deformation of Lie algebroids, Results Math., 62 (2012), 103-120.
doi: 10.1007/s00025-011-0133-x.
|
[36]
|
Y. Sheng, Z. Liu and C. Zhu, Omni-Lie 2-algebras and their Dirac structures, J. Geom. Phys., 61 (2011), 560-575.
doi: 10.1016/j.geomphys.2010.11.005.
|
[37]
|
K. Uchino, Courant brackets on noncommutative algebras and omni-Lie algebras, Tokyo J. Math., 30 (2007), 239-255.
doi: 10.3836/tjm/1184963659.
|
[38]
|
L. Vitagliano, Dirac-Jacobi bundles, J. Symplectic Geom., 16 (2018), 485-561.
doi: 10.4310/JSG.2018.v16.n2.a4.
|
[39]
|
L. Vitagliano and A. Wade, Generalized contact bundles, C. R. Math. Acad. Sci. Paris, 354 (2016), 313-317.
doi: 10.1016/j.crma.2015.12.009.
|
[40]
|
A. Wade, Conformal Dirac structures, Lett. Math. Phys., 53 (2000), 331-348.
doi: 10.1023/A:1007634407701.
|
[41]
|
A. Weinstein, Omni-Lie algebras, Microlocal analysis of the Schrodinger equation and related topics (Japanese) (Kyoto, 1999), S${\bar{u}}$rikaisekikenky${\bar{u}}$sho K${\bar{u}}$ky${\bar{u}}$roku, 1176 (2000), 95–102.
|
[42]
|
M. Zambon, $L_\infty$-algebras and higher analogues of Dirac structures and Courant algebroids, J. Symplectic Geom., 10 (2012), 563-599.
doi: 10.4310/JSG.2012.v10.n4.a4.
|