Max | Min | $ S_1 $ | $ S_2 $ | $ S_3 $ | NCP |
1 | 1 | 0 | 0 | 0 | 2 |
2 | 2 | 2 | 0 | 0 | 6 |
3 | 3 | 4 | 0 | 0 | 10 |
3 | 3 | 0 | 2 | 0 | 8 |
4 | 4 | 6 | 0 | 0 | 14 |
4 | 4 | 2 | 2 | 0 | 12 |
4 | 4 | 0 | 0 | 2 | 10 |
Normal modes are intimately related to the quadratic approximation of a potential at its hyperbolic equilibria. Here we extend the notion to the case where the Taylor expansion for the potential at a critical point starts with higher order terms, and show that such an extension shares some of the properties of standard normal modes. Some symmetric examples are considered in detail.
Citation: |
Figure 2. Numerical integration of the motion generated by the potential (10) with the choice $ {\beta} = 1 $ for initial conditions near to normal modes. In all cases, initial data correspond to zero speed and position at $ r = 1 $ along eigenvectors, with an offset of 0.001 from the latter. The simulation show the outcome, for $ t \in (0,100) $, for initial data: (a) near the eigenvector $ \theta = 0 $, (b) near the eigenvector $ \theta = \pi $, (c) near the eigenvector $ \theta = \pi/4 $, (d) near the eigenvector $ \theta = - \pi/4 $
Table 1.
Different possibilities for the number and type of critical points in the case of a cubic potential in three dimensions; here "Max"and "Min" represent the number of maxima and minima, while "
Max | Min | $ S_1 $ | $ S_2 $ | $ S_3 $ | NCP |
1 | 1 | 0 | 0 | 0 | 2 |
2 | 2 | 2 | 0 | 0 | 6 |
3 | 3 | 4 | 0 | 0 | 10 |
3 | 3 | 0 | 2 | 0 | 8 |
4 | 4 | 6 | 0 | 0 | 14 |
4 | 4 | 2 | 2 | 0 | 12 |
4 | 4 | 0 | 0 | 2 | 10 |
[1] | V. I. Arnold, Mathematical Methods of Classical Mechanics, Third edition. "Nauka", Moscow, 1989. |
[2] | V. I. Arnold, Ordinary Differential Equations, Springer, 1992. |
[3] | V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, Springer, 1983. |
[4] | J. P. Bornsen and A. E. M. van de Ven, Tangent developable orbit space of an octupole, preprint, arXiv: 1807.04817, 2018. |
[5] | D. Cartwright and B. Sturmfels, The number of eigenvalues of a tensor, Linear Algebra Appl., 438 (2013), 942-952. doi: 10.1016/j.laa.2011.05.040. |
[6] | J. F. Cariñena and A. Ramos, A new geometric approach to Lie systems and physical applications, Acta Appl. Math., 70 (2002), 43-69. doi: 10.1023/A:1013913930134. |
[7] | J. F. Cariñena, J. Grabowski and G. Marmo, Lie-Scheffers Systems. A Geometric Approach, Bibliopolis, 2000. |
[8] | Y. Chen, L. Qi and E. G. Virga, Octupolar tensors for liquid crystals, J. Phys. A, 51 (2018), 025206, 20pp. doi: 10.1088/1751-8121/aa98a8. |
[9] | C. Elphick, E. Tirapegui, M. E. Brachet, P. Coullet and G. Iooss, A simple global characterization for normal forms of singular vector fields, Physica D, 29 (1987), 95-127. doi: 10.1016/0167-2789(87)90049-2. |
[10] | G. Gaeta and E. Virga, The symmetries of octupolar tensors, J. Elast., 135 (2019), 295-350. doi: 10.1007/s10659-018-09722-8. |
[11] | F. Gantmacher, Lectures in Analytical Mechanics, MIR, 1970. |
[12] | G. Gaeta and E. G. Virga, Octupolar order in three dimensions, Eur. Phys. J. E, 39 (2016), 113pp. |
[13] | H. Goldstein, Classical Mechanics, Addison-Wesley, 1980. |
[14] | N. Kruff, J. Llibre, C. Pantazi and S. Walcher, Invariant algebraic surfaces of polynomial vector fields in dimension three, preprint, arXiv: 1907.12536, 2019. |
[15] | L. D. Landau and E. M. Lifhsitz, Mechanics, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1960. |
[16] | J. W. Milnor, Topology from the Differentiable Viewpoint, The University Press of Virginia, Charlottesville, Va. 1965. |
[17] | J. Moser, Regularization of Kepler's problem and the averaging method on a manifold, Comm.Pure Appl. Math., 23 (1970), 609-636. doi: 10.1002/cpa.3160230406. |
[18] | J. Montaldi, M. Roberts and I. Stewart, Existence of nonlinear normal modes in symmetric Hamiltonian systems, Nonlinearity, 3 (1990), 695-730. doi: 10.1088/0951-7715/3/3/009. |
[19] | J. Montaldi, M. Roberts and I. Stewart, Stability of nonlinear normal modes in symmetric Hamiltonian systems, Nonlinearity, 3 (1990), 731-772. doi: 10.1088/0951-7715/3/3/010. |
[20] | L. Qi, Eigenvalues and invariants of tensors, J. Math. Anal. Appl., 325 (2007), 1363-1377. doi: 10.1016/j.jmaa.2006.02.071. |
[21] | L. Qi, H. Chen and Y. Chen, Tensor Eigenvalues and Their Applications, (Advances in Mechanics and Mathematics, vol. 39), Springer, 2018. doi: 10.1007/978-981-10-8058-6. |
[22] | H. Rohrl, A theorem on non-associative algebras and its application to differential equations, Manus. Math., 21 (1977), 181-187. doi: 10.1007/BF01168018. |
[23] | H. Rohrl, Algebras and differential equations, Nagoya Math. J., 68 (1977), 59-122. doi: 10.1017/S0027763000017876. |
[24] | H. Rohrl, On the zeros of polynomials over arbitrary finite-dimensional algebras, Manuscripta Math., 25 (1978), 359-390. doi: 10.1007/BF01168049. |
[25] | H. Rohrl, Finite-dimensional algebras without nilpotents over algebraically closed fields, Arch. Math. (Basel), 32 (1979), 10-12. doi: 10.1007/BF01238461. |
[26] | H. Rohrl and S. Walcher, Projections of polynomial vector fields and the Poincaré sphere, J. Diff. Eqs., 139 (1997), 22-40. doi: 10.1006/jdeq.1997.3298. |
[27] | I. R. Shafarevich, Basic Algebraic Geometry, Springer, 1977. |
[28] | E. Virga, Octupolar order in two dimensions, Eur.Phys. J. E, 38 (2015), 63pp. |
[29] | A. Weinstein, Normal modes for nonlinear Hamiltonian systems, Invent. Math., 20 (1973), 47-57. doi: 10.1007/BF01405263. |
[30] | S. Walcher, Algebras and Differential Equations, Hadronic Press, 1991. |
[31] | S. Walcher, Eigenvectors of tensors – a primer, Acta Appl. Math., 162 (2019), 165-183. doi: 10.1007/s10440-018-0225-7. |
The potential
Numerical integration of the motion generated by the potential (10) with the choice
The potential