-
Previous Article
Erratum for "nonholonomic and constrained variational mechanics"
- JGM Home
- This Issue
-
Next Article
Lagrangian reduction of nonholonomic discrete mechanical systems by stages
Symmetry actuated closed-loop Hamiltonian systems
Österreichische Finanzmarktaufsicht (FMA), Otto-Wagner Platz 5, A-1090 Vienna, Austria |
This paper extends the theory of controlled Hamiltonian systems with symmetries due to [
References:
[1] |
V. I. Arnold,
Sur la géométrie différentielle de groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits, Annales de l'Institut Fourier, 16 (1966), 319-361.
doi: 10.5802/aif.233. |
[2] |
V. Arnold and B. Khesin, Topological Methods in Hydrodynamics, Applied Mathematical Sciences, vol. 125, Springer-Verlag, New York, 1998. |
[3] |
A. Arnaudon, A. L. De Castro and D. D. Holm,
Noise and dissipation on coadjoint orbits, J. Nonlinear Sci., 28 (2018), 91-145.
doi: 10.1007/s00332-017-9404-3. |
[4] |
A. Arnaudon, N. Ganaba and D. Holm,
The stochastic energy – Casimir method, Comptes Rendus Mécanique, 346 (2018), 279-290.
doi: 10.1016/j.crme.2018.01.003. |
[5] |
A. Bloch, D. Chang, N. Leonard and J. E. Marsden,
Controlled Lagrangians and the stabilization of mechanical systems II: Potential shaping, IEEE Trans. Automat. Control, 46 (2001), 1556-1571.
doi: 10.1109/9.956051. |
[6] |
A. Bloch, N. Leonard and J. Marsden,
Controlled Lagrangians and the stabilization of mechanical systems I: The first matching theorem, IEEE Trans. Automat. Control, 45 (2000), 2253-2270.
doi: 10.1109/9.895562. |
[7] |
A. Bloch, N. Leonard and J. Marsden,
Controlled Lagrangians and the stabilization of Euler-Poincaré mechanical systems, Internat. J. Robust Nonlinear Control, 11 (2001), 191-214.
doi: 10.1002/rnc.572. |
[8] |
A. Bloch and N. Leonard, Symmetries, conservation laws, and control, in Geometry, Mechanics and Dynamics, Springer-Verlag, New York, 2002.
doi: 10.1007/b97525. |
[9] |
A. M. Bloch, P. S. Krishnaprasad, J. E. Marsden and G. Sánchez de Alvarez,
Stabilization of rigid body dynamics by internal and external torques, Automatica J. IFAC, 28 (1992), 745-756.
doi: 10.1016/0005-1098(92)90034-D. |
[10] |
A. M. Bloch, J. E. Marsden and G. Sánchez de Alvarez, Feedback stabilization of relative equilibria for mechanical systems with symmetry, in Current and Future Directions in Applied Mathematics, Birkhäuser, Boston, MA, 1997. |
[11] |
D. E. Chang, A. M. Bloch, N. E. Leonard, J. E. Marsden and C. A. Woolsey,
The equivalence of controlled Lagrangian and controlled Hamiltonian systems, ESAIM: Control, Optimisation and Calculus of Variations, 8 (2002), 393-422.
|
[12] |
D. Crisan, F. Flandoli and D. D. Holm,
Solution properties of a 3D stochastic Euler fluid equation, J. Nonlinear Sci., 29 (2019), 813-870.
doi: 10.1007/s00332-018-9506-6. |
[13] |
T. Drivas, D. Holm and J.-M. Leahy,
Lagrangian averaged stochastic advection by Lie transport for fluids, J. Stat. Phys., 179 (2020), 1304-1342.
doi: 10.1007/s10955-020-02493-4. |
[14] |
F. Gay-Balmaz, C. Tronci and C. Vizman,
Geometric dynamics on the automorphism group of principal bundles: Geodesic flows, dual pairs and chromomorphism groups, J. Geom. Mech., 5 (2013), 39-84.
doi: 10.3934/jgm.2013.5.39. |
[15] |
F. Gay-Balmaz and T. Ratiu,
Reduced Lagrangian and Hamiltonian formulations of Euler-Yang-Mills fluids, J. Symplectic Geom., 6 (2008), 189-237.
doi: 10.4310/JSG.2008.v6.n2.a4. |
[16] |
J. Gibbons, D. D. Holm and B. Kupershmidt,
The Hamiltonian structure of classical chromohydrodynamics, Phys. D, 6 (1982/83), 179-194.
doi: 10.1016/0167-2789(83)90004-0. |
[17] |
S. Hochgerner, Symmetry reduction of Brownian motion and quantum Calogero-Moser models, Stoch. Dyn., 13 (2013), 1250007, 31 pp.
doi: 10.1142/S0219493712500074. |
[18] |
S. Hochgerner and T. Ratiu,
The geometry of non-holonomic diffusion, J. Eur. Math. Soc., 17 (2015), 273-319.
doi: 10.4171/JEMS/504. |
[19] |
S. Hochgerner, A Hamiltonian mean field system for the Navier–Stokes equation, Proc. A, 474 (2018), 20180178, 20 pp.
doi: 10.1098/rspa.2018.0178. |
[20] |
S. Hochgerner, Feedback control of charged ideal fluids, preprint, 2020, arXiv: 1905.04778. Google Scholar |
[21] |
D. Holm, J. Marsden, T. Ratiu and A. Weinstein,
Nonlinear stability of fluid and plasma equilibria, Phys. Rep., 123 (1985), 1-116.
doi: 10.1016/0370-1573(85)90028-6. |
[22] |
D. Holm, Variational principles for stochastic fluid dynamics, Proc. A, 471 (2015), 20140963, 19 pp.
doi: 10.1098/rspa.2014.0963. |
[23] |
P. S. Krishnaprasad,
Lie-Poisson structures, dual-spinspacecraft and asymptotic stability, Nonlinear Anal., 9 (1985), 1011-1035.
doi: 10.1016/0362-546X(85)90083-5. |
[24] |
J.-A. Lazaro-Cami and J.-P. Ortega,
Stochastic Hamiltonian dynamical systems, Rep. Math. Phys., 61 (2008), 65-122.
doi: 10.1016/S0034-4877(08)80003-1. |
[25] |
J. E. Marsden, Park City lectures on mechanics, dynamics, and symmetry, in Symplectic Geometry and Topology, IAS/Park City Mathematics Series, No. 7, American Mathematical Society, Providence, RI, 1999,335–430.
doi: 10.1090/pcms/007/09. |
[26] |
J. E. Marsden, A. Weinstein, T. Ratiu, R. Schmid and R. Spencer, Hamiltonian systems with symmetry, coadjoint orbits and plasma physics, Proc. IUTAM-IS1MM Symposium on Modern Developments in Analytical Mechanics (Torino, 1982), Atti Acad. Sci. Torino Cl. Sci. Fis. Math. Natur., 117, (1983), 289–340. |
[27] |
P. Michor, Topics in Differential Geometry, Graduate Studies in Mathematics, vol. 93, Amer. Math. Soc., Providence, RI, 2008.
doi: 10.1090/gsm/093. |
[28] |
P. Michor, Some geometric evolution equations arising as geodesic equations on groups of diffeomorphism, including the Hamiltonian approach, in Phase space analysis of Partial Differential Equations, Birkhäuser Boston, Boston, 2006,133–215.
doi: 10.1007/978-0-8176-4521-2_11. |
[29] |
M. Puiggalí and A. Bloch,
An extension to the theory of controlled Lagrangians using the Helmholtz conditions, J. Nonlinear Sci., 29 (2019), 345-376.
doi: 10.1007/s00332-018-9490-x. |
[30] |
A. Weinstein,
A universal phase space for particles in Yang-Mills fields, Lett. Math. Phys., 2 (1977/78), 417-420.
doi: 10.1007/BF00400169. |
show all references
References:
[1] |
V. I. Arnold,
Sur la géométrie différentielle de groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits, Annales de l'Institut Fourier, 16 (1966), 319-361.
doi: 10.5802/aif.233. |
[2] |
V. Arnold and B. Khesin, Topological Methods in Hydrodynamics, Applied Mathematical Sciences, vol. 125, Springer-Verlag, New York, 1998. |
[3] |
A. Arnaudon, A. L. De Castro and D. D. Holm,
Noise and dissipation on coadjoint orbits, J. Nonlinear Sci., 28 (2018), 91-145.
doi: 10.1007/s00332-017-9404-3. |
[4] |
A. Arnaudon, N. Ganaba and D. Holm,
The stochastic energy – Casimir method, Comptes Rendus Mécanique, 346 (2018), 279-290.
doi: 10.1016/j.crme.2018.01.003. |
[5] |
A. Bloch, D. Chang, N. Leonard and J. E. Marsden,
Controlled Lagrangians and the stabilization of mechanical systems II: Potential shaping, IEEE Trans. Automat. Control, 46 (2001), 1556-1571.
doi: 10.1109/9.956051. |
[6] |
A. Bloch, N. Leonard and J. Marsden,
Controlled Lagrangians and the stabilization of mechanical systems I: The first matching theorem, IEEE Trans. Automat. Control, 45 (2000), 2253-2270.
doi: 10.1109/9.895562. |
[7] |
A. Bloch, N. Leonard and J. Marsden,
Controlled Lagrangians and the stabilization of Euler-Poincaré mechanical systems, Internat. J. Robust Nonlinear Control, 11 (2001), 191-214.
doi: 10.1002/rnc.572. |
[8] |
A. Bloch and N. Leonard, Symmetries, conservation laws, and control, in Geometry, Mechanics and Dynamics, Springer-Verlag, New York, 2002.
doi: 10.1007/b97525. |
[9] |
A. M. Bloch, P. S. Krishnaprasad, J. E. Marsden and G. Sánchez de Alvarez,
Stabilization of rigid body dynamics by internal and external torques, Automatica J. IFAC, 28 (1992), 745-756.
doi: 10.1016/0005-1098(92)90034-D. |
[10] |
A. M. Bloch, J. E. Marsden and G. Sánchez de Alvarez, Feedback stabilization of relative equilibria for mechanical systems with symmetry, in Current and Future Directions in Applied Mathematics, Birkhäuser, Boston, MA, 1997. |
[11] |
D. E. Chang, A. M. Bloch, N. E. Leonard, J. E. Marsden and C. A. Woolsey,
The equivalence of controlled Lagrangian and controlled Hamiltonian systems, ESAIM: Control, Optimisation and Calculus of Variations, 8 (2002), 393-422.
|
[12] |
D. Crisan, F. Flandoli and D. D. Holm,
Solution properties of a 3D stochastic Euler fluid equation, J. Nonlinear Sci., 29 (2019), 813-870.
doi: 10.1007/s00332-018-9506-6. |
[13] |
T. Drivas, D. Holm and J.-M. Leahy,
Lagrangian averaged stochastic advection by Lie transport for fluids, J. Stat. Phys., 179 (2020), 1304-1342.
doi: 10.1007/s10955-020-02493-4. |
[14] |
F. Gay-Balmaz, C. Tronci and C. Vizman,
Geometric dynamics on the automorphism group of principal bundles: Geodesic flows, dual pairs and chromomorphism groups, J. Geom. Mech., 5 (2013), 39-84.
doi: 10.3934/jgm.2013.5.39. |
[15] |
F. Gay-Balmaz and T. Ratiu,
Reduced Lagrangian and Hamiltonian formulations of Euler-Yang-Mills fluids, J. Symplectic Geom., 6 (2008), 189-237.
doi: 10.4310/JSG.2008.v6.n2.a4. |
[16] |
J. Gibbons, D. D. Holm and B. Kupershmidt,
The Hamiltonian structure of classical chromohydrodynamics, Phys. D, 6 (1982/83), 179-194.
doi: 10.1016/0167-2789(83)90004-0. |
[17] |
S. Hochgerner, Symmetry reduction of Brownian motion and quantum Calogero-Moser models, Stoch. Dyn., 13 (2013), 1250007, 31 pp.
doi: 10.1142/S0219493712500074. |
[18] |
S. Hochgerner and T. Ratiu,
The geometry of non-holonomic diffusion, J. Eur. Math. Soc., 17 (2015), 273-319.
doi: 10.4171/JEMS/504. |
[19] |
S. Hochgerner, A Hamiltonian mean field system for the Navier–Stokes equation, Proc. A, 474 (2018), 20180178, 20 pp.
doi: 10.1098/rspa.2018.0178. |
[20] |
S. Hochgerner, Feedback control of charged ideal fluids, preprint, 2020, arXiv: 1905.04778. Google Scholar |
[21] |
D. Holm, J. Marsden, T. Ratiu and A. Weinstein,
Nonlinear stability of fluid and plasma equilibria, Phys. Rep., 123 (1985), 1-116.
doi: 10.1016/0370-1573(85)90028-6. |
[22] |
D. Holm, Variational principles for stochastic fluid dynamics, Proc. A, 471 (2015), 20140963, 19 pp.
doi: 10.1098/rspa.2014.0963. |
[23] |
P. S. Krishnaprasad,
Lie-Poisson structures, dual-spinspacecraft and asymptotic stability, Nonlinear Anal., 9 (1985), 1011-1035.
doi: 10.1016/0362-546X(85)90083-5. |
[24] |
J.-A. Lazaro-Cami and J.-P. Ortega,
Stochastic Hamiltonian dynamical systems, Rep. Math. Phys., 61 (2008), 65-122.
doi: 10.1016/S0034-4877(08)80003-1. |
[25] |
J. E. Marsden, Park City lectures on mechanics, dynamics, and symmetry, in Symplectic Geometry and Topology, IAS/Park City Mathematics Series, No. 7, American Mathematical Society, Providence, RI, 1999,335–430.
doi: 10.1090/pcms/007/09. |
[26] |
J. E. Marsden, A. Weinstein, T. Ratiu, R. Schmid and R. Spencer, Hamiltonian systems with symmetry, coadjoint orbits and plasma physics, Proc. IUTAM-IS1MM Symposium on Modern Developments in Analytical Mechanics (Torino, 1982), Atti Acad. Sci. Torino Cl. Sci. Fis. Math. Natur., 117, (1983), 289–340. |
[27] |
P. Michor, Topics in Differential Geometry, Graduate Studies in Mathematics, vol. 93, Amer. Math. Soc., Providence, RI, 2008.
doi: 10.1090/gsm/093. |
[28] |
P. Michor, Some geometric evolution equations arising as geodesic equations on groups of diffeomorphism, including the Hamiltonian approach, in Phase space analysis of Partial Differential Equations, Birkhäuser Boston, Boston, 2006,133–215.
doi: 10.1007/978-0-8176-4521-2_11. |
[29] |
M. Puiggalí and A. Bloch,
An extension to the theory of controlled Lagrangians using the Helmholtz conditions, J. Nonlinear Sci., 29 (2019), 345-376.
doi: 10.1007/s00332-018-9490-x. |
[30] |
A. Weinstein,
A universal phase space for particles in Yang-Mills fields, Lett. Math. Phys., 2 (1977/78), 417-420.
doi: 10.1007/BF00400169. |
[1] |
Benrong Zheng, Xianpei Hong. Effects of take-back legislation on pricing and coordination in a closed-loop supply chain. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021035 |
[2] |
Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023 |
[3] |
Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029 |
[4] |
Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313 |
[5] |
Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166 |
[6] |
Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028 |
[7] |
Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021012 |
[8] |
J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008 |
[9] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[10] |
Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329 |
[11] |
Lorenzo Freddi. Optimal control of the transmission rate in compartmental epidemics. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021007 |
[12] |
Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020378 |
[13] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[14] |
Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301 |
[15] |
A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909 |
[16] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[17] |
Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021040 |
[18] |
John T. Betts, Stephen Campbell, Claire Digirolamo. Examination of solving optimal control problems with delays using GPOPS-Ⅱ. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 283-305. doi: 10.3934/naco.2020026 |
[19] |
Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021009 |
[20] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
2019 Impact Factor: 0.649
Tools
Article outline
[Back to Top]