December  2020, 12(4): 641-669. doi: 10.3934/jgm.2020030

Symmetry actuated closed-loop Hamiltonian systems

Österreichische Finanzmarktaufsicht (FMA), Otto-Wagner Platz 5, A-1090 Vienna, Austria

Received  December 2019 Published  November 2020

This paper extends the theory of controlled Hamiltonian systems with symmetries due to [23,9,10,6,7,11] to the case of non-abelian symmetry groups $ G $ and semi-direct product configuration spaces. The notion of symmetry actuating forces is introduced and it is shown, that Hamiltonian systems subject to such forces permit a conservation law, which arises as a controlled perturbation of the $ G $-momentum map. Necessary and sufficient matching conditions are given to relate the closed-loop dynamics, associated to the forced Hamiltonian system, to an unforced Hamiltonian system. These matching conditions are then applied to general Lie-Poisson systems, to the example of ideal charged fluids in the presence of an external magnetic field ([20]), and to the satellite with a rotor example ([9,10]).

Citation: Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030
References:
[1]

V. I. Arnold, Sur la géométrie différentielle de groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits, Annales de l'Institut Fourier, 16 (1966), 319-361.  doi: 10.5802/aif.233.  Google Scholar

[2]

V. Arnold and B. Khesin, Topological Methods in Hydrodynamics, Applied Mathematical Sciences, vol. 125, Springer-Verlag, New York, 1998.  Google Scholar

[3]

A. ArnaudonA. L. De Castro and D. D. Holm, Noise and dissipation on coadjoint orbits, J. Nonlinear Sci., 28 (2018), 91-145.  doi: 10.1007/s00332-017-9404-3.  Google Scholar

[4]

A. ArnaudonN. Ganaba and D. Holm, The stochastic energy – Casimir method, Comptes Rendus Mécanique, 346 (2018), 279-290.  doi: 10.1016/j.crme.2018.01.003.  Google Scholar

[5]

A. BlochD. ChangN. Leonard and J. E. Marsden, Controlled Lagrangians and the stabilization of mechanical systems II: Potential shaping, IEEE Trans. Automat. Control, 46 (2001), 1556-1571.  doi: 10.1109/9.956051.  Google Scholar

[6]

A. BlochN. Leonard and J. Marsden, Controlled Lagrangians and the stabilization of mechanical systems I: The first matching theorem, IEEE Trans. Automat. Control, 45 (2000), 2253-2270.  doi: 10.1109/9.895562.  Google Scholar

[7]

A. BlochN. Leonard and J. Marsden, Controlled Lagrangians and the stabilization of Euler-Poincaré mechanical systems, Internat. J. Robust Nonlinear Control, 11 (2001), 191-214.  doi: 10.1002/rnc.572.  Google Scholar

[8]

A. Bloch and N. Leonard, Symmetries, conservation laws, and control, in Geometry, Mechanics and Dynamics, Springer-Verlag, New York, 2002. doi: 10.1007/b97525.  Google Scholar

[9]

A. M. BlochP. S. KrishnaprasadJ. E. Marsden and G. Sánchez de Alvarez, Stabilization of rigid body dynamics by internal and external torques, Automatica J. IFAC, 28 (1992), 745-756.  doi: 10.1016/0005-1098(92)90034-D.  Google Scholar

[10]

A. M. Bloch, J. E. Marsden and G. Sánchez de Alvarez, Feedback stabilization of relative equilibria for mechanical systems with symmetry, in Current and Future Directions in Applied Mathematics, Birkhäuser, Boston, MA, 1997.  Google Scholar

[11]

D. E. ChangA. M. BlochN. E. LeonardJ. E. Marsden and C. A. Woolsey, The equivalence of controlled Lagrangian and controlled Hamiltonian systems, ESAIM: Control, Optimisation and Calculus of Variations, 8 (2002), 393-422.   Google Scholar

[12]

D. CrisanF. Flandoli and D. D. Holm, Solution properties of a 3D stochastic Euler fluid equation, J. Nonlinear Sci., 29 (2019), 813-870.  doi: 10.1007/s00332-018-9506-6.  Google Scholar

[13]

T. DrivasD. Holm and J.-M. Leahy, Lagrangian averaged stochastic advection by Lie transport for fluids, J. Stat. Phys., 179 (2020), 1304-1342.  doi: 10.1007/s10955-020-02493-4.  Google Scholar

[14]

F. Gay-BalmazC. Tronci and C. Vizman, Geometric dynamics on the automorphism group of principal bundles: Geodesic flows, dual pairs and chromomorphism groups, J. Geom. Mech., 5 (2013), 39-84.  doi: 10.3934/jgm.2013.5.39.  Google Scholar

[15]

F. Gay-Balmaz and T. Ratiu, Reduced Lagrangian and Hamiltonian formulations of Euler-Yang-Mills fluids, J. Symplectic Geom., 6 (2008), 189-237.  doi: 10.4310/JSG.2008.v6.n2.a4.  Google Scholar

[16]

J. GibbonsD. D. Holm and B. Kupershmidt, The Hamiltonian structure of classical chromohydrodynamics, Phys. D, 6 (1982/83), 179-194.  doi: 10.1016/0167-2789(83)90004-0.  Google Scholar

[17]

S. Hochgerner, Symmetry reduction of Brownian motion and quantum Calogero-Moser models, Stoch. Dyn., 13 (2013), 1250007, 31 pp. doi: 10.1142/S0219493712500074.  Google Scholar

[18]

S. Hochgerner and T. Ratiu, The geometry of non-holonomic diffusion, J. Eur. Math. Soc., 17 (2015), 273-319.  doi: 10.4171/JEMS/504.  Google Scholar

[19]

S. Hochgerner, A Hamiltonian mean field system for the Navier–Stokes equation, Proc. A, 474 (2018), 20180178, 20 pp. doi: 10.1098/rspa.2018.0178.  Google Scholar

[20]

S. Hochgerner, Feedback control of charged ideal fluids, preprint, 2020, arXiv: 1905.04778. Google Scholar

[21]

D. HolmJ. MarsdenT. Ratiu and A. Weinstein, Nonlinear stability of fluid and plasma equilibria, Phys. Rep., 123 (1985), 1-116.  doi: 10.1016/0370-1573(85)90028-6.  Google Scholar

[22]

D. Holm, Variational principles for stochastic fluid dynamics, Proc. A, 471 (2015), 20140963, 19 pp. doi: 10.1098/rspa.2014.0963.  Google Scholar

[23]

P. S. Krishnaprasad, Lie-Poisson structures, dual-spinspacecraft and asymptotic stability, Nonlinear Anal., 9 (1985), 1011-1035.  doi: 10.1016/0362-546X(85)90083-5.  Google Scholar

[24]

J.-A. Lazaro-Cami and J.-P. Ortega, Stochastic Hamiltonian dynamical systems, Rep. Math. Phys., 61 (2008), 65-122.  doi: 10.1016/S0034-4877(08)80003-1.  Google Scholar

[25]

J. E. Marsden, Park City lectures on mechanics, dynamics, and symmetry, in Symplectic Geometry and Topology, IAS/Park City Mathematics Series, No. 7, American Mathematical Society, Providence, RI, 1999,335–430. doi: 10.1090/pcms/007/09.  Google Scholar

[26]

J. E. Marsden, A. Weinstein, T. Ratiu, R. Schmid and R. Spencer, Hamiltonian systems with symmetry, coadjoint orbits and plasma physics, Proc. IUTAM-IS1MM Symposium on Modern Developments in Analytical Mechanics (Torino, 1982), Atti Acad. Sci. Torino Cl. Sci. Fis. Math. Natur., 117, (1983), 289–340.  Google Scholar

[27]

P. Michor, Topics in Differential Geometry, Graduate Studies in Mathematics, vol. 93, Amer. Math. Soc., Providence, RI, 2008. doi: 10.1090/gsm/093.  Google Scholar

[28]

P. Michor, Some geometric evolution equations arising as geodesic equations on groups of diffeomorphism, including the Hamiltonian approach, in Phase space analysis of Partial Differential Equations, Birkhäuser Boston, Boston, 2006,133–215. doi: 10.1007/978-0-8176-4521-2_11.  Google Scholar

[29]

M. Puiggalí and A. Bloch, An extension to the theory of controlled Lagrangians using the Helmholtz conditions, J. Nonlinear Sci., 29 (2019), 345-376.  doi: 10.1007/s00332-018-9490-x.  Google Scholar

[30]

A. Weinstein, A universal phase space for particles in Yang-Mills fields, Lett. Math. Phys., 2 (1977/78), 417-420.  doi: 10.1007/BF00400169.  Google Scholar

show all references

References:
[1]

V. I. Arnold, Sur la géométrie différentielle de groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits, Annales de l'Institut Fourier, 16 (1966), 319-361.  doi: 10.5802/aif.233.  Google Scholar

[2]

V. Arnold and B. Khesin, Topological Methods in Hydrodynamics, Applied Mathematical Sciences, vol. 125, Springer-Verlag, New York, 1998.  Google Scholar

[3]

A. ArnaudonA. L. De Castro and D. D. Holm, Noise and dissipation on coadjoint orbits, J. Nonlinear Sci., 28 (2018), 91-145.  doi: 10.1007/s00332-017-9404-3.  Google Scholar

[4]

A. ArnaudonN. Ganaba and D. Holm, The stochastic energy – Casimir method, Comptes Rendus Mécanique, 346 (2018), 279-290.  doi: 10.1016/j.crme.2018.01.003.  Google Scholar

[5]

A. BlochD. ChangN. Leonard and J. E. Marsden, Controlled Lagrangians and the stabilization of mechanical systems II: Potential shaping, IEEE Trans. Automat. Control, 46 (2001), 1556-1571.  doi: 10.1109/9.956051.  Google Scholar

[6]

A. BlochN. Leonard and J. Marsden, Controlled Lagrangians and the stabilization of mechanical systems I: The first matching theorem, IEEE Trans. Automat. Control, 45 (2000), 2253-2270.  doi: 10.1109/9.895562.  Google Scholar

[7]

A. BlochN. Leonard and J. Marsden, Controlled Lagrangians and the stabilization of Euler-Poincaré mechanical systems, Internat. J. Robust Nonlinear Control, 11 (2001), 191-214.  doi: 10.1002/rnc.572.  Google Scholar

[8]

A. Bloch and N. Leonard, Symmetries, conservation laws, and control, in Geometry, Mechanics and Dynamics, Springer-Verlag, New York, 2002. doi: 10.1007/b97525.  Google Scholar

[9]

A. M. BlochP. S. KrishnaprasadJ. E. Marsden and G. Sánchez de Alvarez, Stabilization of rigid body dynamics by internal and external torques, Automatica J. IFAC, 28 (1992), 745-756.  doi: 10.1016/0005-1098(92)90034-D.  Google Scholar

[10]

A. M. Bloch, J. E. Marsden and G. Sánchez de Alvarez, Feedback stabilization of relative equilibria for mechanical systems with symmetry, in Current and Future Directions in Applied Mathematics, Birkhäuser, Boston, MA, 1997.  Google Scholar

[11]

D. E. ChangA. M. BlochN. E. LeonardJ. E. Marsden and C. A. Woolsey, The equivalence of controlled Lagrangian and controlled Hamiltonian systems, ESAIM: Control, Optimisation and Calculus of Variations, 8 (2002), 393-422.   Google Scholar

[12]

D. CrisanF. Flandoli and D. D. Holm, Solution properties of a 3D stochastic Euler fluid equation, J. Nonlinear Sci., 29 (2019), 813-870.  doi: 10.1007/s00332-018-9506-6.  Google Scholar

[13]

T. DrivasD. Holm and J.-M. Leahy, Lagrangian averaged stochastic advection by Lie transport for fluids, J. Stat. Phys., 179 (2020), 1304-1342.  doi: 10.1007/s10955-020-02493-4.  Google Scholar

[14]

F. Gay-BalmazC. Tronci and C. Vizman, Geometric dynamics on the automorphism group of principal bundles: Geodesic flows, dual pairs and chromomorphism groups, J. Geom. Mech., 5 (2013), 39-84.  doi: 10.3934/jgm.2013.5.39.  Google Scholar

[15]

F. Gay-Balmaz and T. Ratiu, Reduced Lagrangian and Hamiltonian formulations of Euler-Yang-Mills fluids, J. Symplectic Geom., 6 (2008), 189-237.  doi: 10.4310/JSG.2008.v6.n2.a4.  Google Scholar

[16]

J. GibbonsD. D. Holm and B. Kupershmidt, The Hamiltonian structure of classical chromohydrodynamics, Phys. D, 6 (1982/83), 179-194.  doi: 10.1016/0167-2789(83)90004-0.  Google Scholar

[17]

S. Hochgerner, Symmetry reduction of Brownian motion and quantum Calogero-Moser models, Stoch. Dyn., 13 (2013), 1250007, 31 pp. doi: 10.1142/S0219493712500074.  Google Scholar

[18]

S. Hochgerner and T. Ratiu, The geometry of non-holonomic diffusion, J. Eur. Math. Soc., 17 (2015), 273-319.  doi: 10.4171/JEMS/504.  Google Scholar

[19]

S. Hochgerner, A Hamiltonian mean field system for the Navier–Stokes equation, Proc. A, 474 (2018), 20180178, 20 pp. doi: 10.1098/rspa.2018.0178.  Google Scholar

[20]

S. Hochgerner, Feedback control of charged ideal fluids, preprint, 2020, arXiv: 1905.04778. Google Scholar

[21]

D. HolmJ. MarsdenT. Ratiu and A. Weinstein, Nonlinear stability of fluid and plasma equilibria, Phys. Rep., 123 (1985), 1-116.  doi: 10.1016/0370-1573(85)90028-6.  Google Scholar

[22]

D. Holm, Variational principles for stochastic fluid dynamics, Proc. A, 471 (2015), 20140963, 19 pp. doi: 10.1098/rspa.2014.0963.  Google Scholar

[23]

P. S. Krishnaprasad, Lie-Poisson structures, dual-spinspacecraft and asymptotic stability, Nonlinear Anal., 9 (1985), 1011-1035.  doi: 10.1016/0362-546X(85)90083-5.  Google Scholar

[24]

J.-A. Lazaro-Cami and J.-P. Ortega, Stochastic Hamiltonian dynamical systems, Rep. Math. Phys., 61 (2008), 65-122.  doi: 10.1016/S0034-4877(08)80003-1.  Google Scholar

[25]

J. E. Marsden, Park City lectures on mechanics, dynamics, and symmetry, in Symplectic Geometry and Topology, IAS/Park City Mathematics Series, No. 7, American Mathematical Society, Providence, RI, 1999,335–430. doi: 10.1090/pcms/007/09.  Google Scholar

[26]

J. E. Marsden, A. Weinstein, T. Ratiu, R. Schmid and R. Spencer, Hamiltonian systems with symmetry, coadjoint orbits and plasma physics, Proc. IUTAM-IS1MM Symposium on Modern Developments in Analytical Mechanics (Torino, 1982), Atti Acad. Sci. Torino Cl. Sci. Fis. Math. Natur., 117, (1983), 289–340.  Google Scholar

[27]

P. Michor, Topics in Differential Geometry, Graduate Studies in Mathematics, vol. 93, Amer. Math. Soc., Providence, RI, 2008. doi: 10.1090/gsm/093.  Google Scholar

[28]

P. Michor, Some geometric evolution equations arising as geodesic equations on groups of diffeomorphism, including the Hamiltonian approach, in Phase space analysis of Partial Differential Equations, Birkhäuser Boston, Boston, 2006,133–215. doi: 10.1007/978-0-8176-4521-2_11.  Google Scholar

[29]

M. Puiggalí and A. Bloch, An extension to the theory of controlled Lagrangians using the Helmholtz conditions, J. Nonlinear Sci., 29 (2019), 345-376.  doi: 10.1007/s00332-018-9490-x.  Google Scholar

[30]

A. Weinstein, A universal phase space for particles in Yang-Mills fields, Lett. Math. Phys., 2 (1977/78), 417-420.  doi: 10.1007/BF00400169.  Google Scholar

[1]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

[2]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[3]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[4]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[5]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[6]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[7]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[8]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[9]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[10]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[11]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[12]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[13]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[14]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[15]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[16]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[17]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

2019 Impact Factor: 0.649

Article outline

[Back to Top]