March  2021, 13(1): 55-72. doi: 10.3934/jgm.2020031

A Lagrangian approach to extremal curves on Stiefel manifolds

1. 

Institute of Mathematics, Julius-Maximilians-Universität Würzburg, Germany

2. 

Department of Mathematics, University of Bergen, Norway

3. 

Institute of Systems and Robotics, and Department of Mathematics, University of Coimbra, Portugal

* Corresponding author

Received  March 2020 Published  March 2021 Early access  November 2020

A unified framework for studying extremal curves on real Stiefel manifolds is presented. We start with a smooth one-parameter family of pseudo-Riemannian metrics on a product of orthogonal groups acting transitively on Stiefel manifolds. In the next step Euler-Langrange equations for a whole class of extremal curves on Stiefel manifolds are derived. This includes not only geodesics with respect to different Riemannian metrics, but so-called quasi-geodesics and smooth curves of constant geodesic curvature, as well. It is shown that they all can be written in closed form. Our results are put into perspective to recent related work where a Hamiltonian rather than a Lagrangian approach was used. For some specific values of the parameter we recover certain well-known results.

Citation: Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2021, 13 (1) : 55-72. doi: 10.3934/jgm.2020031
References:
[1] P.-A. AbsilR. Mahony and R. Sepulchre, Optimization Algorithms on Matrix Manifolds, Princeton University Press, Princeton, NJ, 2008.  doi: 10.1515/9781400830244.  Google Scholar
[2]

R. L. AdlerJ.-P. DedieuJ. Y. MarguliesM. Martens and M. Shub, Newton's method on Riemannian manifolds and a geometric model for the human spine, IMA J. Numer. Anal., 22 (2002), 359-390.  doi: 10.1093/imanum/22.3.359.  Google Scholar

[3] A. AgrachevD. Barilari and U. Boscain, A Comprehensive Introduction to Sub-Riemannian Geometry, Cambridge University Press, Cambridge, 2020.  doi: 10.1017/9781108677325.  Google Scholar
[4]

A. Bloch, L. Colombo, R. Gupta and D. Martín de Diego, A geometric approach to the optimal control of nonholonomic mechanical systems, in Analysis and Geometry in Control Theory and Its Applications, Springer, Cham, 2015, 35–64. doi: 10.1007/978-3-319-06917-3_2.  Google Scholar

[5]

A. M. Bloch, Nonholonomic Mechanics and Control, 2nd edition, Springer, New York, 2015. doi: 10.1007/978-1-4939-3017-3.  Google Scholar

[6]

A. M. BlochJ. E. Marsden and D. V. Zenkov, Nonholonomic dynamics, Notices Amer. Math. Soc., 52 (2005), 324-333.   Google Scholar

[7]

A. M. BlochP. E. Crouch and A. K. Sanyal, A variational problem on Stiefel manifolds, Nonlinearity, 19 (2006), 2247-2276.  doi: 10.1088/0951-7715/19/10/002.  Google Scholar

[8]

R. W. Brockett, Finite dimensional linear systems, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2015. doi: 10.1137/1.9781611973884.  Google Scholar

[9]

A. EdelmanT. A. Arias and S. T. Smith, The geometry of algorithms with orthogonality constraints, SIAM J. Matrix Anal. Appl., 20 (1998), 303-353.  doi: 10.1137/S0895479895290954.  Google Scholar

[10]

J. Faraut, Analysis on Lie Groups. An Introduction, Cambridge University Press, Cambridge, 2008. doi: 10.1017/CBO9780511755170.  Google Scholar

[11]

Y. N. Fedorov and B. Jovanović, Geodesic flows and Neumann systems on Stiefel varieties: Geometry and integrability, Math. Z., 270 (2012), 659-698.  doi: 10.1007/s00209-010-0818-y.  Google Scholar

[12]

I. Gohberg, P. Lancaster and L. Rodman, Indefinite Linear Algebra and Applications, Birkhäuser Verlag, Basel, 2005. doi: 10.1007/b137517.  Google Scholar

[13]

K. HüperM. Kleinsteuber and F. Silva Leite, Rolling Stiefel manifolds, Internat. J. Systems Sci., 39 (2008), 881-887.  doi: 10.1080/00207720802184717.  Google Scholar

[14]

K. Hüper, I. Markina and F. Silva Leite, An extrinsic approach to sub-Riemannian geodesics on the orthogonal group, in CONTROLO 2020, Proceedings of the 14th APCA International Conference on Automatic Control and Soft Computing, vol. 695, LNEE, Bragança, Portugal, Springer 2020,274–283. doi: 10.1007/978-3-030-58653-9_26.  Google Scholar

[15]

K. Hüper and F Ullrich, Real Stiefel manifolds: An extrinsic point of view, In 13th APCA International Conference on Automatic Control and Soft Computing (Controlo 2018), Ponta Delgada, Azores, Portugal, 2018, 13–18. doi: 10.1109/CONTROLO.2018.8514292.  Google Scholar

[16]

I. I. Hussein and A. M. Bloch, Optimal control of underactuated nonholonomic mechanical systems, IEEE Trans. Automat. Control, 53 (2008), 668-682.  doi: 10.1109/TAC.2008.919853.  Google Scholar

[17] V. Jurdjevic, Optimal Control and Geometry: Integrable Systems, Cambridge University Press, Cambridge, 2016.  doi: 10.1017/CBO9781316286852.  Google Scholar
[18]

V. Jurdjevic, I. Markina and F. Silva Leite, Extremal curves on Stiefel and Grassmann manifolds, Journal of Geometric Analysis, 30 (2020), 3948–3978. doi: 10.1007/s12220-019-00223-1.  Google Scholar

[19]

V. Jurdjevic, F. Silva Leite and K. Krakowski, The geometry of quasi-geodesics on Stiefel manifolds, in 13th APCA International Conference on Automatic Control and Soft Computing (Controlo 2018), Ponta Delgada, Azores, Portugal, 2018,213–218. doi: 10.1109/CONTROLO.2018.8514270.  Google Scholar

[20]

K. A. KrakowskiL. MachadoF. Silva Leite and J. Batista, A modified Casteljau algorithm to solve interpolation problems on Stiefel manifolds, J. Comput. Appl. Math., 311 (2017), 84-99.  doi: 10.1016/j.cam.2016.07.018.  Google Scholar

[21]

R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications, American Mathematical Society, Providence, RI, 2002. doi: 10.1090/surv/091.  Google Scholar

[22]

Y. Nishimori and S. Akaho, Learning algorithms utilizing quasi-geodesic flows on the Stiefel manifold, Neurocomputing, 67 (2005), 106-135.  doi: 10.1016/j.neucom.2004.11.035.  Google Scholar

[23]

A. L. Onishchik, Topology of Transitive Transformation Groups, Johann Ambrosius Barth Verlag GmbH, Leipzig, 1994.  Google Scholar

[24]

J. Roe, Lectures on Coarse Geometry, American Mathematical Society, Providence, RI, 2003. doi: 10.1090/ulect/031.  Google Scholar

[25]

J. Roe, What is $\dots$ a coarse space?, Notices Amer. Math. Soc., 53 (2006), 668-669.   Google Scholar

[26]

E. Stiefel, Richtungsfelder und Fernparallelismus in n-dimensionalen Mannigfaltigkeiten, Comment. Math. Helv., 8 (1935), 305-353.   Google Scholar

[27]

F. Ullrich, Rolling maps for real Stiefel manifolds, Master's thesis, Institute of Mathematics, Julius-Maximilians-Universität Würzburg, Germany, 2017. Google Scholar

[28]

E. Zeidler, Nonlinear Functional Analysis and Its Applications, vol. 3, Springer-Verlag, New York, 1985. doi: 10.1007/978-1-4612-5020-3.  Google Scholar

show all references

References:
[1] P.-A. AbsilR. Mahony and R. Sepulchre, Optimization Algorithms on Matrix Manifolds, Princeton University Press, Princeton, NJ, 2008.  doi: 10.1515/9781400830244.  Google Scholar
[2]

R. L. AdlerJ.-P. DedieuJ. Y. MarguliesM. Martens and M. Shub, Newton's method on Riemannian manifolds and a geometric model for the human spine, IMA J. Numer. Anal., 22 (2002), 359-390.  doi: 10.1093/imanum/22.3.359.  Google Scholar

[3] A. AgrachevD. Barilari and U. Boscain, A Comprehensive Introduction to Sub-Riemannian Geometry, Cambridge University Press, Cambridge, 2020.  doi: 10.1017/9781108677325.  Google Scholar
[4]

A. Bloch, L. Colombo, R. Gupta and D. Martín de Diego, A geometric approach to the optimal control of nonholonomic mechanical systems, in Analysis and Geometry in Control Theory and Its Applications, Springer, Cham, 2015, 35–64. doi: 10.1007/978-3-319-06917-3_2.  Google Scholar

[5]

A. M. Bloch, Nonholonomic Mechanics and Control, 2nd edition, Springer, New York, 2015. doi: 10.1007/978-1-4939-3017-3.  Google Scholar

[6]

A. M. BlochJ. E. Marsden and D. V. Zenkov, Nonholonomic dynamics, Notices Amer. Math. Soc., 52 (2005), 324-333.   Google Scholar

[7]

A. M. BlochP. E. Crouch and A. K. Sanyal, A variational problem on Stiefel manifolds, Nonlinearity, 19 (2006), 2247-2276.  doi: 10.1088/0951-7715/19/10/002.  Google Scholar

[8]

R. W. Brockett, Finite dimensional linear systems, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2015. doi: 10.1137/1.9781611973884.  Google Scholar

[9]

A. EdelmanT. A. Arias and S. T. Smith, The geometry of algorithms with orthogonality constraints, SIAM J. Matrix Anal. Appl., 20 (1998), 303-353.  doi: 10.1137/S0895479895290954.  Google Scholar

[10]

J. Faraut, Analysis on Lie Groups. An Introduction, Cambridge University Press, Cambridge, 2008. doi: 10.1017/CBO9780511755170.  Google Scholar

[11]

Y. N. Fedorov and B. Jovanović, Geodesic flows and Neumann systems on Stiefel varieties: Geometry and integrability, Math. Z., 270 (2012), 659-698.  doi: 10.1007/s00209-010-0818-y.  Google Scholar

[12]

I. Gohberg, P. Lancaster and L. Rodman, Indefinite Linear Algebra and Applications, Birkhäuser Verlag, Basel, 2005. doi: 10.1007/b137517.  Google Scholar

[13]

K. HüperM. Kleinsteuber and F. Silva Leite, Rolling Stiefel manifolds, Internat. J. Systems Sci., 39 (2008), 881-887.  doi: 10.1080/00207720802184717.  Google Scholar

[14]

K. Hüper, I. Markina and F. Silva Leite, An extrinsic approach to sub-Riemannian geodesics on the orthogonal group, in CONTROLO 2020, Proceedings of the 14th APCA International Conference on Automatic Control and Soft Computing, vol. 695, LNEE, Bragança, Portugal, Springer 2020,274–283. doi: 10.1007/978-3-030-58653-9_26.  Google Scholar

[15]

K. Hüper and F Ullrich, Real Stiefel manifolds: An extrinsic point of view, In 13th APCA International Conference on Automatic Control and Soft Computing (Controlo 2018), Ponta Delgada, Azores, Portugal, 2018, 13–18. doi: 10.1109/CONTROLO.2018.8514292.  Google Scholar

[16]

I. I. Hussein and A. M. Bloch, Optimal control of underactuated nonholonomic mechanical systems, IEEE Trans. Automat. Control, 53 (2008), 668-682.  doi: 10.1109/TAC.2008.919853.  Google Scholar

[17] V. Jurdjevic, Optimal Control and Geometry: Integrable Systems, Cambridge University Press, Cambridge, 2016.  doi: 10.1017/CBO9781316286852.  Google Scholar
[18]

V. Jurdjevic, I. Markina and F. Silva Leite, Extremal curves on Stiefel and Grassmann manifolds, Journal of Geometric Analysis, 30 (2020), 3948–3978. doi: 10.1007/s12220-019-00223-1.  Google Scholar

[19]

V. Jurdjevic, F. Silva Leite and K. Krakowski, The geometry of quasi-geodesics on Stiefel manifolds, in 13th APCA International Conference on Automatic Control and Soft Computing (Controlo 2018), Ponta Delgada, Azores, Portugal, 2018,213–218. doi: 10.1109/CONTROLO.2018.8514270.  Google Scholar

[20]

K. A. KrakowskiL. MachadoF. Silva Leite and J. Batista, A modified Casteljau algorithm to solve interpolation problems on Stiefel manifolds, J. Comput. Appl. Math., 311 (2017), 84-99.  doi: 10.1016/j.cam.2016.07.018.  Google Scholar

[21]

R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications, American Mathematical Society, Providence, RI, 2002. doi: 10.1090/surv/091.  Google Scholar

[22]

Y. Nishimori and S. Akaho, Learning algorithms utilizing quasi-geodesic flows on the Stiefel manifold, Neurocomputing, 67 (2005), 106-135.  doi: 10.1016/j.neucom.2004.11.035.  Google Scholar

[23]

A. L. Onishchik, Topology of Transitive Transformation Groups, Johann Ambrosius Barth Verlag GmbH, Leipzig, 1994.  Google Scholar

[24]

J. Roe, Lectures on Coarse Geometry, American Mathematical Society, Providence, RI, 2003. doi: 10.1090/ulect/031.  Google Scholar

[25]

J. Roe, What is $\dots$ a coarse space?, Notices Amer. Math. Soc., 53 (2006), 668-669.   Google Scholar

[26]

E. Stiefel, Richtungsfelder und Fernparallelismus in n-dimensionalen Mannigfaltigkeiten, Comment. Math. Helv., 8 (1935), 305-353.   Google Scholar

[27]

F. Ullrich, Rolling maps for real Stiefel manifolds, Master's thesis, Institute of Mathematics, Julius-Maximilians-Universität Würzburg, Germany, 2017. Google Scholar

[28]

E. Zeidler, Nonlinear Functional Analysis and Its Applications, vol. 3, Springer-Verlag, New York, 1985. doi: 10.1007/978-1-4612-5020-3.  Google Scholar

[1]

Alice Le Brigant. Computing distances and geodesics between manifold-valued curves in the SRV framework. Journal of Geometric Mechanics, 2017, 9 (2) : 131-156. doi: 10.3934/jgm.2017005

[2]

Caiping Liu, Heungwing Lee. Lagrange multiplier rules for approximate solutions in vector optimization. Journal of Industrial & Management Optimization, 2012, 8 (3) : 749-764. doi: 10.3934/jimo.2012.8.749

[3]

Mohammad Hassan Farshbaf-Shaker, Takeshi Fukao, Noriaki Yamazaki. Singular limit of Allen--Cahn equation with constraint and its Lagrange multiplier. Conference Publications, 2015, 2015 (special) : 418-427. doi: 10.3934/proc.2015.0418

[4]

Vladimir Georgiev, Eugene Stepanov. Metric cycles, curves and solenoids. Discrete & Continuous Dynamical Systems, 2014, 34 (4) : 1443-1463. doi: 10.3934/dcds.2014.34.1443

[5]

Alexander Nabutovsky and Regina Rotman. Lengths of geodesics between two points on a Riemannian manifold. Electronic Research Announcements, 2007, 13: 13-20.

[6]

Pedro L. García, Antonio Fernández, César Rodrigo. Variational integrators for discrete Lagrange problems. Journal of Geometric Mechanics, 2010, 2 (4) : 343-374. doi: 10.3934/jgm.2010.2.343

[7]

Agnieszka B. Malinowska, Delfim F. M. Torres. Euler-Lagrange equations for composition functionals in calculus of variations on time scales. Discrete & Continuous Dynamical Systems, 2011, 29 (2) : 577-593. doi: 10.3934/dcds.2011.29.577

[8]

Vladimir S. Matveev and Petar J. Topalov. Metric with ergodic geodesic flow is completely determined by unparameterized geodesics. Electronic Research Announcements, 2000, 6: 98-104.

[9]

Tapio Rajala. Improved geodesics for the reduced curvature-dimension condition in branching metric spaces. Discrete & Continuous Dynamical Systems, 2013, 33 (7) : 3043-3056. doi: 10.3934/dcds.2013.33.3043

[10]

Martin Bauer, Martins Bruveris, Philipp Harms, Peter W. Michor. Soliton solutions for the elastic metric on spaces of curves. Discrete & Continuous Dynamical Systems, 2018, 38 (3) : 1161-1185. doi: 10.3934/dcds.2018049

[11]

Stefano Bianchini. On the Euler-Lagrange equation for a variational problem. Discrete & Continuous Dynamical Systems, 2007, 17 (3) : 449-480. doi: 10.3934/dcds.2007.17.449

[12]

Takeshi Fukao, Nobuyuki Kenmochi. Abstract theory of variational inequalities and Lagrange multipliers. Conference Publications, 2013, 2013 (special) : 237-246. doi: 10.3934/proc.2013.2013.237

[13]

Erwann Delay, Pieralberto Sicbaldi. Extremal domains for the first eigenvalue in a general compact Riemannian manifold. Discrete & Continuous Dynamical Systems, 2015, 35 (12) : 5799-5825. doi: 10.3934/dcds.2015.35.5799

[14]

Artur M. C. Brito da Cruz, Natália Martins, Delfim F. M. Torres. Hahn's symmetric quantum variational calculus. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 77-94. doi: 10.3934/naco.2013.3.77

[15]

Eduardo Martínez. Higher-order variational calculus on Lie algebroids. Journal of Geometric Mechanics, 2015, 7 (1) : 81-108. doi: 10.3934/jgm.2015.7.81

[16]

Viviana Alejandra Díaz, David Martín de Diego. Generalized variational calculus for continuous and discrete mechanical systems. Journal of Geometric Mechanics, 2018, 10 (4) : 373-410. doi: 10.3934/jgm.2018014

[17]

Peng Huang, Xiong Li, Bin Liu. Invariant curves of smooth quasi-periodic mappings. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 131-154. doi: 10.3934/dcds.2018006

[18]

Alice B. Tumpach, Stephen C. Preston. Quotient elastic metrics on the manifold of arc-length parameterized plane curves. Journal of Geometric Mechanics, 2017, 9 (2) : 227-256. doi: 10.3934/jgm.2017010

[19]

Hui Liu, Yiming Long, Yuming Xiao. The existence of two non-contractible closed geodesics on every bumpy Finsler compact space form. Discrete & Continuous Dynamical Systems, 2018, 38 (8) : 3803-3829. doi: 10.3934/dcds.2018165

[20]

Dingheng Pi. Limit cycles for regularized piecewise smooth systems with a switching manifold of codimension two. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 881-905. doi: 10.3934/dcdsb.2018211

2020 Impact Factor: 0.857

Metrics

  • PDF downloads (228)
  • HTML views (365)
  • Cited by (0)

Other articles
by authors

[Back to Top]