
-
Previous Article
The principle of virtual work and Hamilton's principle on Galilean manifolds
- JGM Home
- This Issue
-
Next Article
A Lagrangian approach to extremal curves on Stiefel manifolds
Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model
1. | McTAO team, INRIA Sophia Antipolis, 2004 Route des Lucioles, 06902 Valbonne, France |
2. | L@bISEN, Yncréa Ouest, 20 rue Cuirassé Bretagne, 29200 Brest, France |
A recent force-fatigue parameterized mathematical model, based on the seminal contributions of V. Hill to describe muscular activity, allows to predict the muscular force response to external electrical stimulation (FES) and it opens the road to optimize the FES-input to maximize the force response to a pulse train, to track a reference force while minimizing the fatigue for a sequence of pulse trains or to follow a reference joint angle trajectory to produce motion in the non-isometric case. In this article, we introduce the geometric frame to analyze the dynamics and we present Pontryagin types necessary optimality conditions adapted to digital controls, used in the experiments, vs permanent control and which fits in the optimal sampled-data control frame. This leads to Hamiltonian differential variational inequalities, which can be numerically implemented vs direct optimization schemes.
References:
[1] |
A. A. Agrachëv and R. V. Gamkrelidze, Symplectic geometry for optimal control, in Nonlinear Controllability and Optimal Control, Monogr. Textbooks Pure Appl. Math., 133, Dekker, New York, 1990,263-277. |
[2] |
T. Bakir, B. Bonnard, L. Bourdin and J. Rouot, Direct and indirect methods to optimize the muscular force response to a pulse train of electrical stimulation, in progress. Google Scholar |
[3] |
T. Bakir, B. Bonnard, L. Bourdin and J. Rouot,
Pontryagin-type conditions for optimal muscular force response to functional electrical stimulations, J. Optim. Theory Appl., 184 (2020), 581-602.
doi: 10.1007/s10957-019-01599-4. |
[4] |
T. Bakir, B. Bonnard and S. Othman, Predictive control based on nonlinear observer for muscular force and fatigue model, 2018 Annual American Control Conference (ACC), Milwaukee, WI, 2018, 2157-2162.
doi: 10.23919/ACC.2018.8430962. |
[5] |
T. Bakir, B. Bonnard and J. Rouot,
A case study of optimal input-output system with sampled-data control: Ding et al. force and fatigue muscular control model, Netw. Heterog. Media, 14 (2019), 79-100.
doi: 10.3934/nhm.2019005. |
[6] |
G. A. Bliss, Lectures on the Calculus of Variations, University of Chicago Press, Chicago, Ill., 1946.
![]() |
[7] |
B. Bonnard and M. Chyba, Singular Trajectories and Their Role in Control Theory, Mathematics & Applications, 40, Springer-Verlag, Berlin, 2003. |
[8] |
B. Bonnard and I. Kupka,
Generic properties of singular trajectories, Ann. Inst. H. Poincaré Anal. Non Linéaire, 14 (1997), 167-186.
doi: 10.1016/S0294-1449(97)80143-6. |
[9] |
U. Boscain and B. Piccoli, Optimal Syntheses for Control Systems on 2-D Manifolds, Mathematics & Applications, 43, Springer-Verlag, Berlin, 2004. |
[10] |
N. Bourbaki, Lie groups and Lie algebras. Chapters 4-6, in Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002.
doi: 10.1007/978-3-540-89394-3. |
[11] |
L. Bourdin and G. Dhar,
Continuity/constancy of the Hamiltonian function in a Pontryagin maximum principle for optimal sampled-data control problems with free sampling times, Math. Control Signals Systems, 31 (2019), 503-544.
doi: 10.1007/s00498-019-00247-6. |
[12] |
L. Bourdin and E. Trélat,
Optimal sampled-data control, and generalizations on time scales, Math. Control Relat. Fields, 6 (2016), 53-94.
doi: 10.3934/mcrf.2016.6.53. |
[13] |
P. Brunovský,
A classification of linear controllable systems, Kybernetika (Prague), 6 (1970), 173-188.
|
[14] |
J.-B. Caillau, O. Cots and J. Gergaud,
Differential continuation for regular optimal control problems, Optim. Methods Softw., 27 (2012), 177-196.
doi: 10.1080/10556788.2011.593625. |
[15] |
J. Ding, A. S. Wexler and S. A. Binder-Macleod,
A predictive fatigue model. Ⅰ. Predicting the effect of stimulation frequency and pattern on fatigue, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 10 (2002), 48-58.
doi: 10.1109/TNSRE.2002.1021586. |
[16] |
J. Ding, A. S. Wexler and S. A. Binder-Macleod,
A predictive fatigue model. Ⅱ. Predicting the effect of resting times on fatigue, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 10 (2002), 59-67.
doi: 10.1109/TNSRE.2002.1021587. |
[17] |
J. Ding, A. S. Wexler and S. A. Binder-Macleod,
Development of a mathematical model that predicts optimal muscle activation patterns by using brief trains, J. Appl. Physiol., 88 (2000), 917-925.
doi: 10.1152/jappl.2000.88.3.917. |
[18] |
B. D. Doll, N. A. Kirsch and N. Sharma,
Optimization of a stimulation train based on a predictive model of muscle force and fatigue, IFAC-PapersOnLine, 48 (2015), 338-342.
doi: 10.1016/j.ifacol.2015.10.162. |
[19] |
R. V. Gamkrelidze,
Discovery of the maximum principle, J. Dynam. Control Systems, 5 (1999), 437-451.
doi: 10.1023/A:1021783020548. |
[20] |
I. M. Gelfand and S. V. Fomin, Calculus of Variations, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1963. |
[21] |
R. Gesztelyi, J. Zsuga, A. Kemeny-Beke, B. Varga, B. Juhasz and A. Tosaki,
The Hill equation and the origin of quantitative pharmacology, Arch. Hist. Exact Sci., 66 (2012), 427-438.
doi: 10.1007/s00407-012-0098-5. |
[22] |
S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Graduate Studies in Mathematics, 34, American Mathematical Society, Providence, RI, 2001.
doi: 10.1090/gsm/034. |
[23] |
R. Hermann and A. J. Krener,
Nonlinear controllability and observability, IEEE Trans. Automatic Control, AC-22 (1977), 728-740.
doi: 10.1109/tac.1977.1101601. |
[24] |
A. Isidori, Non-Linear Control Systems, Communications and Control Engineering Series, Springer-Verlag, Berlin, 1995.
doi: 10.1007/978-1-84628-615-5. |
[25] |
E. B. Lee and L. Markus, Foundations of Optimal Control Theory, Robert E. Kreiger Publishing Co., Inc., Melbourne, FL, 1986. |
[26] |
M. S. Marion, Predicting Fatigue During Electrically Stimulated Non-Isometric Contractions, Ph.D thesis, University of California Davis, 2010. |
[27] |
M. S. Marion, A. S. Wexler and M. L. Hull, Predicting non-isometric fatigue induced by electrical stimulation pulse trains as a function of pulse duration, J. Neuroengineering Rehab., 10 (2013).
doi: 10.1186/1743-0003-10-13. |
[28] |
V. Renault, M. Thieullen and E. Trélat,
Minimal time spiking in various ChR2-controlled neuron models, J. Math. Biol., 76 (2018), 567-608.
doi: 10.1007/s00285-017-1101-1. |
[29] |
H. Schättler and U. Ledzewicz, Geometric Optimal Control. Theory, Methods and Examples, Interdisciplinary Applied Mathematics, 38, Springer, New York, 2012.
doi: 10.1007/978-1-4614-3834-2. |
[30] |
H. J. Sussmann and V. Jurdjevic,
Controllability of nonlinear systems, J. Differential Equations, 12 (1972), 95-116.
doi: 10.1016/0022-0396(72)90007-1. |
[31] |
R. Vinter, Optimal Control, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 2000. |
show all references
References:
[1] |
A. A. Agrachëv and R. V. Gamkrelidze, Symplectic geometry for optimal control, in Nonlinear Controllability and Optimal Control, Monogr. Textbooks Pure Appl. Math., 133, Dekker, New York, 1990,263-277. |
[2] |
T. Bakir, B. Bonnard, L. Bourdin and J. Rouot, Direct and indirect methods to optimize the muscular force response to a pulse train of electrical stimulation, in progress. Google Scholar |
[3] |
T. Bakir, B. Bonnard, L. Bourdin and J. Rouot,
Pontryagin-type conditions for optimal muscular force response to functional electrical stimulations, J. Optim. Theory Appl., 184 (2020), 581-602.
doi: 10.1007/s10957-019-01599-4. |
[4] |
T. Bakir, B. Bonnard and S. Othman, Predictive control based on nonlinear observer for muscular force and fatigue model, 2018 Annual American Control Conference (ACC), Milwaukee, WI, 2018, 2157-2162.
doi: 10.23919/ACC.2018.8430962. |
[5] |
T. Bakir, B. Bonnard and J. Rouot,
A case study of optimal input-output system with sampled-data control: Ding et al. force and fatigue muscular control model, Netw. Heterog. Media, 14 (2019), 79-100.
doi: 10.3934/nhm.2019005. |
[6] |
G. A. Bliss, Lectures on the Calculus of Variations, University of Chicago Press, Chicago, Ill., 1946.
![]() |
[7] |
B. Bonnard and M. Chyba, Singular Trajectories and Their Role in Control Theory, Mathematics & Applications, 40, Springer-Verlag, Berlin, 2003. |
[8] |
B. Bonnard and I. Kupka,
Generic properties of singular trajectories, Ann. Inst. H. Poincaré Anal. Non Linéaire, 14 (1997), 167-186.
doi: 10.1016/S0294-1449(97)80143-6. |
[9] |
U. Boscain and B. Piccoli, Optimal Syntheses for Control Systems on 2-D Manifolds, Mathematics & Applications, 43, Springer-Verlag, Berlin, 2004. |
[10] |
N. Bourbaki, Lie groups and Lie algebras. Chapters 4-6, in Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002.
doi: 10.1007/978-3-540-89394-3. |
[11] |
L. Bourdin and G. Dhar,
Continuity/constancy of the Hamiltonian function in a Pontryagin maximum principle for optimal sampled-data control problems with free sampling times, Math. Control Signals Systems, 31 (2019), 503-544.
doi: 10.1007/s00498-019-00247-6. |
[12] |
L. Bourdin and E. Trélat,
Optimal sampled-data control, and generalizations on time scales, Math. Control Relat. Fields, 6 (2016), 53-94.
doi: 10.3934/mcrf.2016.6.53. |
[13] |
P. Brunovský,
A classification of linear controllable systems, Kybernetika (Prague), 6 (1970), 173-188.
|
[14] |
J.-B. Caillau, O. Cots and J. Gergaud,
Differential continuation for regular optimal control problems, Optim. Methods Softw., 27 (2012), 177-196.
doi: 10.1080/10556788.2011.593625. |
[15] |
J. Ding, A. S. Wexler and S. A. Binder-Macleod,
A predictive fatigue model. Ⅰ. Predicting the effect of stimulation frequency and pattern on fatigue, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 10 (2002), 48-58.
doi: 10.1109/TNSRE.2002.1021586. |
[16] |
J. Ding, A. S. Wexler and S. A. Binder-Macleod,
A predictive fatigue model. Ⅱ. Predicting the effect of resting times on fatigue, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 10 (2002), 59-67.
doi: 10.1109/TNSRE.2002.1021587. |
[17] |
J. Ding, A. S. Wexler and S. A. Binder-Macleod,
Development of a mathematical model that predicts optimal muscle activation patterns by using brief trains, J. Appl. Physiol., 88 (2000), 917-925.
doi: 10.1152/jappl.2000.88.3.917. |
[18] |
B. D. Doll, N. A. Kirsch and N. Sharma,
Optimization of a stimulation train based on a predictive model of muscle force and fatigue, IFAC-PapersOnLine, 48 (2015), 338-342.
doi: 10.1016/j.ifacol.2015.10.162. |
[19] |
R. V. Gamkrelidze,
Discovery of the maximum principle, J. Dynam. Control Systems, 5 (1999), 437-451.
doi: 10.1023/A:1021783020548. |
[20] |
I. M. Gelfand and S. V. Fomin, Calculus of Variations, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1963. |
[21] |
R. Gesztelyi, J. Zsuga, A. Kemeny-Beke, B. Varga, B. Juhasz and A. Tosaki,
The Hill equation and the origin of quantitative pharmacology, Arch. Hist. Exact Sci., 66 (2012), 427-438.
doi: 10.1007/s00407-012-0098-5. |
[22] |
S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Graduate Studies in Mathematics, 34, American Mathematical Society, Providence, RI, 2001.
doi: 10.1090/gsm/034. |
[23] |
R. Hermann and A. J. Krener,
Nonlinear controllability and observability, IEEE Trans. Automatic Control, AC-22 (1977), 728-740.
doi: 10.1109/tac.1977.1101601. |
[24] |
A. Isidori, Non-Linear Control Systems, Communications and Control Engineering Series, Springer-Verlag, Berlin, 1995.
doi: 10.1007/978-1-84628-615-5. |
[25] |
E. B. Lee and L. Markus, Foundations of Optimal Control Theory, Robert E. Kreiger Publishing Co., Inc., Melbourne, FL, 1986. |
[26] |
M. S. Marion, Predicting Fatigue During Electrically Stimulated Non-Isometric Contractions, Ph.D thesis, University of California Davis, 2010. |
[27] |
M. S. Marion, A. S. Wexler and M. L. Hull, Predicting non-isometric fatigue induced by electrical stimulation pulse trains as a function of pulse duration, J. Neuroengineering Rehab., 10 (2013).
doi: 10.1186/1743-0003-10-13. |
[28] |
V. Renault, M. Thieullen and E. Trélat,
Minimal time spiking in various ChR2-controlled neuron models, J. Math. Biol., 76 (2018), 567-608.
doi: 10.1007/s00285-017-1101-1. |
[29] |
H. Schättler and U. Ledzewicz, Geometric Optimal Control. Theory, Methods and Examples, Interdisciplinary Applied Mathematics, 38, Springer, New York, 2012.
doi: 10.1007/978-1-4614-3834-2. |
[30] |
H. J. Sussmann and V. Jurdjevic,
Controllability of nonlinear systems, J. Differential Equations, 12 (1972), 95-116.
doi: 10.1016/0022-0396(72)90007-1. |
[31] |
R. Vinter, Optimal Control, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 2000. |




Variable | Value | Unit | Variable | Value | Unit |
45.4 | N | 247.5 | N | ||
20×-3 | s | 99.4 | s | ||
2100 | N s−1 | 3.52×-1 | |||
3.61×-2 | s | 5.21×-2 | s | ||
4.49×-4 | deg−2 | 3.44×-2 | deg−1 | ||
3.71×-1 | N deg−2 | 2.29×-2 | deg−1 | ||
9.85 | kg m−1 | -4.02×-1 | s−2 | ||
1.36×-5 | s−1 N−1 | 2.93×-5 | N−1 | ||
8.54×-7 | s deg−1 N−1 | 1.143 | |||
0 | deg−1 s−1 | 0 | deg−1 N−1 |
Variable | Value | Unit | Variable | Value | Unit |
45.4 | N | 247.5 | N | ||
20×-3 | s | 99.4 | s | ||
2100 | N s−1 | 3.52×-1 | |||
3.61×-2 | s | 5.21×-2 | s | ||
4.49×-4 | deg−2 | 3.44×-2 | deg−1 | ||
3.71×-1 | N deg−2 | 2.29×-2 | deg−1 | ||
9.85 | kg m−1 | -4.02×-1 | s−2 | ||
1.36×-5 | s−1 N−1 | 2.93×-5 | N−1 | ||
8.54×-7 | s deg−1 N−1 | 1.143 | |||
0 | deg−1 s−1 | 0 | deg−1 N−1 |
Variable | Value | Unit | Variable | Value | Unit |
20×-3 | s | 127 | s | ||
3.009 | kN s−1 | 1.03×-1 | |||
5.1×-2 | s | 1.24×-1 | s | ||
-4×-1 | s−2 | 1.9×-2 | s−1 kN−1 | ||
2.1×-2 | kN−1 | 2 |
Variable | Value | Unit | Variable | Value | Unit |
20×-3 | s | 127 | s | ||
3.009 | kN s−1 | 1.03×-1 | |||
5.1×-2 | s | 1.24×-1 | s | ||
-4×-1 | s−2 | 1.9×-2 | s−1 kN−1 | ||
2.1×-2 | kN−1 | 2 |
[1] |
Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020110 |
[2] |
Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020107 |
[3] |
Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019 |
[4] |
Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations & Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051 |
[5] |
Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020046 |
[6] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033 |
[7] |
Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020052 |
[8] |
Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1711-1722. doi: 10.3934/dcdsb.2020179 |
[9] |
Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020045 |
[10] |
Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099 |
[11] |
Ali Wehbe, Rayan Nasser, Nahla Noun. Stability of N-D transmission problem in viscoelasticity with localized Kelvin-Voigt damping under different types of geometric conditions. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020050 |
[12] |
Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133 |
[13] |
Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021022 |
[14] |
Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020347 |
[15] |
Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213 |
[16] |
Lars Grüne, Roberto Guglielmi. On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems. Mathematical Control & Related Fields, 2021, 11 (1) : 169-188. doi: 10.3934/mcrf.2020032 |
[17] |
Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026 |
[18] |
Arthur Fleig, Lars Grüne. Strict dissipativity analysis for classes of optimal control problems involving probability density functions. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020053 |
[19] |
Xiuli Xu, Xueke Pu. Optimal convergence rates of the magnetohydrodynamic model for quantum plasmas with potential force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 987-1010. doi: 10.3934/dcdsb.2020150 |
[20] |
João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138 |
2019 Impact Factor: 0.649
Tools
Metrics
Other articles
by authors
[Back to Top]