December  2020, 12(4): 671-675. doi: 10.3934/jgm.2020033

Erratum for "nonholonomic and constrained variational mechanics"

Department of Mathematics and Statistics, Queeen's University, Kingston, ON K7L 3N6, Canada

Received  August 2020 Published  November 2020

Citation: Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033
References:
[1]

Andrew D. Lewis, Nonholonomic and constrained variational mechanics, Journal of Geometric Mechanics, 12 (2020), 165-308.  doi: 10.3934/jgm.2020013.  Google Scholar

show all references

References:
[1]

Andrew D. Lewis, Nonholonomic and constrained variational mechanics, Journal of Geometric Mechanics, 12 (2020), 165-308.  doi: 10.3934/jgm.2020013.  Google Scholar

[1]

Andrew D. Lewis. Nonholonomic and constrained variational mechanics. Journal of Geometric Mechanics, 2020, 12 (2) : 165-308. doi: 10.3934/jgm.2020013

[2]

Juan Carlos Marrero, D. Martín de Diego, Diana Sosa. Variational constrained mechanics on Lie affgebroids. Discrete & Continuous Dynamical Systems - S, 2010, 3 (1) : 105-128. doi: 10.3934/dcdss.2010.3.105

[3]

Paul Popescu, Cristian Ida. Nonlinear constraints in nonholonomic mechanics. Journal of Geometric Mechanics, 2014, 6 (4) : 527-547. doi: 10.3934/jgm.2014.6.527

[4]

Oscar E. Fernandez, Anthony M. Bloch, P. J. Olver. Variational Integrators for Hamiltonizable Nonholonomic Systems. Journal of Geometric Mechanics, 2012, 4 (2) : 137-163. doi: 10.3934/jgm.2012.4.137

[5]

Mariano Giaquinta, Paolo Maria Mariano, Giuseppe Modica. A variational problem in the mechanics of complex materials. Discrete & Continuous Dynamical Systems, 2010, 28 (2) : 519-537. doi: 10.3934/dcds.2010.28.519

[6]

Waldyr M. Oliva, Gláucio Terra. Improving E. Cartan considerations on the invariance of nonholonomic mechanics. Journal of Geometric Mechanics, 2019, 11 (3) : 439-446. doi: 10.3934/jgm.2019022

[7]

Juan Carlos Marrero, David Martín de Diego, Ari Stern. Symplectic groupoids and discrete constrained Lagrangian mechanics. Discrete & Continuous Dynamical Systems, 2015, 35 (1) : 367-397. doi: 10.3934/dcds.2015.35.367

[8]

Giuseppe Buttazzo, Luigi De Pascale, Ilaria Fragalà. Erratum. Discrete & Continuous Dynamical Systems, 2007, 18 (1) : 219-220. doi: 10.3934/dcds.2007.18.219

[9]

Freddy Dumortier, Robert Roussarie. Erratum. Discrete & Continuous Dynamical Systems, 2008, 22 (3) : 816-816. doi: 10.3934/dcds.2008.22.816

[10]

M. R. Hassan. Erratum. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2277-2277. doi: 10.3934/jimo.2021064

[11]

François Genoud. Erratum. Discrete & Continuous Dynamical Systems, 2010, 26 (3) : 1119-1120. doi: 10.3934/dcds.2010.26.1119

[12]

Bernhard Kawohl. Erratum. Discrete & Continuous Dynamical Systems, 2007, 17 (3) : 690-690. doi: 10.3934/dcds.2007.17.690

[13]

Inwon C. Kim. Erratum. Discrete & Continuous Dynamical Systems, 2011, 30 (1) : 375-377. doi: 10.3934/dcds.2011.30.375

[14]

Antoine Gloria Cermics. Erratum. Networks & Heterogeneous Media, 2006, 1 (3) : 513-514. doi: 10.3934/nhm.2006.1.513

[15]

John B. Little. Erratum. Advances in Mathematics of Communications, 2008, 2 (3) : 344-345. doi: 10.3934/amc.2008.2.344

[16]

Urszula Ledzewicz, Andrzej Swierniak. ERRATUM. Mathematical Biosciences & Engineering, 2005, 2 (3) : 671-671. doi: 10.3934/mbe.2005.2.671

[17]

Richard A. Brualdi, Kathleen P. Kiernan, Seth A. Meyer, Michael W. Schroeder. Erratum. Advances in Mathematics of Communications, 2010, 4 (4) : 597-597. doi: 10.3934/amc.2010.4.597

[18]

David Auger, Irène Charon, Iiro Honkala, Olivier Hudry, Antoine Lobstein. Erratum. Advances in Mathematics of Communications, 2009, 3 (4) : 429-430. doi: 10.3934/amc.2009.3.429

[19]

Manuel de León, Juan Carlos Marrero, David Martín de Diego. Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics. Journal of Geometric Mechanics, 2010, 2 (2) : 159-198. doi: 10.3934/jgm.2010.2.159

[20]

Luis C. García-Naranjo, Mats Vermeeren. Structure preserving discretization of time-reparametrized Hamiltonian systems with application to nonholonomic mechanics. Journal of Computational Dynamics, 2021  doi: 10.3934/jcd.2021011

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (70)
  • HTML views (128)
  • Cited by (0)

Other articles
by authors

[Back to Top]