
- Previous Article
- JGM Home
- This Issue
-
Next Article
A unifying approach for rolling symmetric spaces
Contact Hamiltonian and Lagrangian systems with nonholonomic constraints
1. | Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM), C\Nicolás Cabrera, 13-15, Campus Cantoblanco, UAM, 28049 Madrid, Spain |
2. | Universidad de Alcalá (UAH) Campus Universitario. Ctra. Madrid-Barcelona, Km. 33, 600. 28805 Alcal´a de Henares, Madrid, Spain |
3. | Real Academia de Ciencias Exactas, Fisicas y Naturales C/de Valverde 22, 28004 Madrid, Spain |
In this article we develop a theory of contact systems with nonholonomic constraints. We obtain the dynamics from Herglotz's variational principle, by restricting the variations so that they satisfy the nonholonomic constraints. We prove that the nonholonomic dynamics can be obtained as a projection of the unconstrained Hamiltonian vector field. Finally, we construct the nonholonomic bracket, which is an almost Jacobi bracket on the space of observables and provides the nonholonomic dynamics.
References:
[1] |
R. Abraham and J. E. Marsden, Foundations of Mechanics, AMS Chelsea Publishing, Redwood City, CA, 1978.
doi: 10.1090/chel/364. |
[2] |
L. Bates and J. Śniatycki,
Nonholonomic reduction, Rep. Math. Phys., 32 (1993), 99-115.
doi: 10.1016/0034-4877(93)90073-N. |
[3] |
A. M. Bloch, P. S. Krishnaprasad, J. E. Marsden and R. M. Murray,
Nonholonomic mechanical systems with symmetry, Arch. Rational Mech. Anal., 136 (1996), 21-99.
doi: 10.1007/BF02199365. |
[4] |
A. V. Borisov and I. S. Mamaev,
On the history of the development of the nonholonomic dynamics, Regul. Chaotic Dyn., 7 (2002), 43-47.
doi: 10.1070/RD2002v007n01ABEH000194. |
[5] |
A. Bravetti, Contact geometry and thermodynamics, Int. J. Geom. Methods Mod. Phys., 16 (2019), 51pp.
doi: 10.1142/S0219887819400036. |
[6] |
A. Bravetti, Contact Hamiltonian dynamics: The concept and its use, Entropy, 19 (2017), 12pp.
doi: 10.3390/e19100535. |
[7] |
A. Bravetti, M. de León, J. C. Marrero and E. Padrón, Invariant measures for contact Hamiltonian systems: Symplectic sandwiches with contact bread, J. Phys. A: Math. Theoret., 53 (2020).
doi: 10.1088/1751-8121/abbaaa. |
[8] |
A. Cannas da Silva and A. Weinstein, Geometric Models for Noncommutative Algebras, Berkeley Mathematics Lecture Notes, 10, American Mathematical Society, Providence, RI; Berkeley Center for Pure and Applied Mathematics, Berkeley, CA, 1999. |
[9] |
S. A. Chaplygin, Analysis of the Dynamics of Non-Holonomic Systems, Gostekhizdat, Mosow-Leningrad, 1949. Google Scholar |
[10] |
M. de León and D. M. de Diego,
A constraint algorithm for singular Lagrangians subjected to nonholonomic constraints, J. Math. Phys., 38 (1997), 3055-3062.
doi: 10.1063/1.532051. |
[11] |
M. de León and D. M. de Diego,
On the geometry of non-holonomic Lagrangian systems, J. Math. Phys., 37 (1996), 3389-3414.
doi: 10.1063/1.531571. |
[12] |
M. de León and D. M. de Diego,
Solving non-holonomic Lagrangian dynamics in terms of almost product structures, Extracta Math., 11 (1996), 325-347.
|
[13] |
M. de León and M. Lainz Valcázar, Contact Hamiltonian systems, J. Math. Phys., 60 (2019), 18pp.
doi: 10.1063/1.5096475. |
[14] |
M. de León and M. Lainz Valcázar, Infinitesimal symmetries in contact Hamiltonian systems, J. Geom. Phys., 153 (2020), 13pp.
doi: 10.1016/j.geomphys.2020.103651. |
[15] |
M. de León and M. Lainz Valcázar, Singular Lagrangians and precontact Hamiltonian systems, Int. J. Geom. Methods Mod. Phys., 16 (2019), 39pp.
doi: 10.1142/S0219887819501585. |
[16] |
M. de León, J. C. Marrero and D. M. de Diego,
Non-holonomic Lagrangian systems in jet manifolds, J. Phys. A, 30 (1997), 1167-1190.
doi: 10.1088/0305-4470/30/4/018. |
[17] |
M. de León and P. R. Rodrigues,
Higher-order mechanical systems with constraints, Internat. J. Theoret. Phys., 31 (1992), 1303-1313.
doi: 10.1007/BF00673930. |
[18] |
M. de León and P. R. Rodrigues, Methods of Differential Geometry in Analytical Mechanics, North-Holland Mathematics Studies, 158, North-Holland Publishing Co., Amsterdam, 1989. |
[19] |
M. A. de León,
A historical review on nonholomic mechanics, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 106 (2012), 191-284.
doi: 10.1007/s13398-011-0046-2. |
[20] |
J. Gaset, X. Gràcia, M. C. Muñoz-Lecanda, X. Rivas and N. Román-Roy, New contributions to the Hamiltonian and Lagrangian contact formalisms for dissipative mechanical systems and their symmetries, Int. J. Geom. Methods Mod. Phys., 17 (2020), 27pp.
doi: 10.1142/S0219887820500905. |
[21] |
F. Gay-Balmaz and H. Yoshimura,
A Lagrangian variational formulation for nonequilibrium thermodynamics. Part I: Discrete systems, J. Geom. Phys., 111 (2017), 169-193.
doi: 10.1016/j.geomphys.2016.08.018. |
[22] |
F. Gay-Balmaz and H. Yoshimura, From Lagrangian mechanics to nonequilibrium thermodynamics: A variational perspective, Entropy, 21 (2019).
doi: 10.3390/e21010008. |
[23] |
B. Georgieva, The variational principle of Hergloz and related resultst, in Geometry, Integrability and Quantization, Avangard Prima, Sofia, 2011, 214–225. |
[24] |
B. Georgieva, R. Guenther and T. Bodurov,
Generalized variational principle of Herglotz for several independent variables. First Noether-type theorem, J. Math. Phys., 44 (2003), 3911-3927.
doi: 10.1063/1.1597419. |
[25] |
H. Goldstein, C. P. Poole and J. L. Safko, Classical Mechanics, 2006. Google Scholar |
[26] |
G. Herglotz, Beruhrungstransformationen, in Lectures at the University of Gottingen, Gottingen, 1930. Google Scholar |
[27] |
A. Ibort, M. de León, G. Marmo and D. M. de Diego, Non-holonomic constrained systems as implicit differential equations. Geometrical structures for physical theories, I (Vietri, 1996), Rend. Sem. Mat. Univ. Politec. Torino, 54 (1996), 295–-317. |
[28] |
A. A. Kirillov,
Local Lie algebras, Uspehi Mat. Nauk, 31 (1976), 57-76.
doi: 10.1070/RM1976v031n04ABEH001556. |
[29] |
J. Koiller,
Reduction of some classical nonholonomic systems with symmetry, Arch. Rational Mech. Anal., 118 (1992), 113-148.
doi: 10.1007/BF00375092. |
[30] |
V. V. Kozlov,
On the integration theory of equations of nonholonomic mechanics, Regul. Chaotic Dyn., 7 (2002), 161-176.
doi: 10.1070/RD2002v007n02ABEH000203. |
[31] |
V. V. Kozlov,
Realization of nonintegrable constraints in classical mechanics, Dokl. Akad. Nauk SSSR, 272 (1983), 550-554.
|
[32] |
A. V. Kremnev and A. S. Kuleshov,
Nonlinear dynamics and stability of the skateboard, Discrete Contin. Dyn. Syst. Ser. S, 3 (2010), 85-103.
doi: 10.3934/dcdss.2010.3.85. |
[33] |
A. S. Kuleshov,
A mathematical model of the snakeboard, Mat. Model., 18 (2006), 37-48.
|
[34] |
P. Libermann and C.-M. Marle, Symplectic Geometry and Analytical Mechanics, Mathematics and Its Applications, 35, D. Reidel Publishing Co., Dordrecht, 1987.
doi: 10.1007/978-94-009-3807-6. |
[35] |
A. Lichnerowicz,
Les variétés de Jacobi et leurs algèbres de Lie associées, J. Math. Pures Appl. (9), 57 (1978), 453-488.
|
[36] |
Q. Liu, P. J. Torres and C. Wang,
Contact Hamiltonian dynamics: Variational principles, invariants, completeness and periodic behavior, Ann. Physics, 395 (2018), 26-44.
doi: 10.1016/j.aop.2018.04.035. |
[37] |
N. K. Moshchuk,
On the motion of Chaplygin's sledge, J. Appl. Math. Mech., 51 (1987), 426-430.
doi: 10.1016/0021-8928(87)90079-7. |
[38] |
J. I. Ne${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over i} }}$mark and N. A. Fufaev, Dynamics of Nonholonomic Systems, Translations of Mathematical Monographs, 33, American Mathematical Society, Providence, RI, 1972.
doi: 10.1090/mmono/033. |
[39] |
V. V. Rumiantsev,
On Hamilton's principle for nonholonomic systems, Prikl. Mat. Mekh., 42 (1978), 387-399.
|
[40] |
V. V. Rumyantsev,
Variational principles for systems with unilateral constraints, J. Appl. Math. Mech., 70 (2006), 808-818.
doi: 10.1016/j.jappmathmech.2007.01.002. |
[41] |
A. A. Simoes, D. M. de Diego, M. de León and M. L. Valcázar, On the geometry of discrete contact mechanics, preprint, arXiv: 2003.11892. Google Scholar |
[42] |
A. A. Simoes, M. de León, M. L. Valcázar and D. M. de Diego,
Contact geometry for simple thermodynamical systems with friction, Proc. A, 476 (2020), 244-259.
doi: 10.1098/rspa.2020.0244. |
[43] |
I. Vaisman, Lectures on the Geometry of Poisson Manifolds, Progress in Mathematics, 118, Birkhäuser Verlag, Basel, 1994.
doi: 10.1007/978-3-0348-8495-2. |
[44] |
A. van der Schaft, Classical thermodynamics revisited: A systems and control perspective, preprint, arXiv: 2010.04213. Google Scholar |
[45] |
M. Vermeeren, A. Bravetti and M. Seri, Contact variational integrators, J. Phys. A, 52 (2019), 28pp.
doi: 10.1088/1751-8121/ab4767. |
[46] |
A. M. Vershik and L. D. Faddeev, Differential geometry and Lagrangian mechanics with constraints, Soviet Physics. Doklady, 17 (1972), 34-36. Google Scholar |
show all references
References:
[1] |
R. Abraham and J. E. Marsden, Foundations of Mechanics, AMS Chelsea Publishing, Redwood City, CA, 1978.
doi: 10.1090/chel/364. |
[2] |
L. Bates and J. Śniatycki,
Nonholonomic reduction, Rep. Math. Phys., 32 (1993), 99-115.
doi: 10.1016/0034-4877(93)90073-N. |
[3] |
A. M. Bloch, P. S. Krishnaprasad, J. E. Marsden and R. M. Murray,
Nonholonomic mechanical systems with symmetry, Arch. Rational Mech. Anal., 136 (1996), 21-99.
doi: 10.1007/BF02199365. |
[4] |
A. V. Borisov and I. S. Mamaev,
On the history of the development of the nonholonomic dynamics, Regul. Chaotic Dyn., 7 (2002), 43-47.
doi: 10.1070/RD2002v007n01ABEH000194. |
[5] |
A. Bravetti, Contact geometry and thermodynamics, Int. J. Geom. Methods Mod. Phys., 16 (2019), 51pp.
doi: 10.1142/S0219887819400036. |
[6] |
A. Bravetti, Contact Hamiltonian dynamics: The concept and its use, Entropy, 19 (2017), 12pp.
doi: 10.3390/e19100535. |
[7] |
A. Bravetti, M. de León, J. C. Marrero and E. Padrón, Invariant measures for contact Hamiltonian systems: Symplectic sandwiches with contact bread, J. Phys. A: Math. Theoret., 53 (2020).
doi: 10.1088/1751-8121/abbaaa. |
[8] |
A. Cannas da Silva and A. Weinstein, Geometric Models for Noncommutative Algebras, Berkeley Mathematics Lecture Notes, 10, American Mathematical Society, Providence, RI; Berkeley Center for Pure and Applied Mathematics, Berkeley, CA, 1999. |
[9] |
S. A. Chaplygin, Analysis of the Dynamics of Non-Holonomic Systems, Gostekhizdat, Mosow-Leningrad, 1949. Google Scholar |
[10] |
M. de León and D. M. de Diego,
A constraint algorithm for singular Lagrangians subjected to nonholonomic constraints, J. Math. Phys., 38 (1997), 3055-3062.
doi: 10.1063/1.532051. |
[11] |
M. de León and D. M. de Diego,
On the geometry of non-holonomic Lagrangian systems, J. Math. Phys., 37 (1996), 3389-3414.
doi: 10.1063/1.531571. |
[12] |
M. de León and D. M. de Diego,
Solving non-holonomic Lagrangian dynamics in terms of almost product structures, Extracta Math., 11 (1996), 325-347.
|
[13] |
M. de León and M. Lainz Valcázar, Contact Hamiltonian systems, J. Math. Phys., 60 (2019), 18pp.
doi: 10.1063/1.5096475. |
[14] |
M. de León and M. Lainz Valcázar, Infinitesimal symmetries in contact Hamiltonian systems, J. Geom. Phys., 153 (2020), 13pp.
doi: 10.1016/j.geomphys.2020.103651. |
[15] |
M. de León and M. Lainz Valcázar, Singular Lagrangians and precontact Hamiltonian systems, Int. J. Geom. Methods Mod. Phys., 16 (2019), 39pp.
doi: 10.1142/S0219887819501585. |
[16] |
M. de León, J. C. Marrero and D. M. de Diego,
Non-holonomic Lagrangian systems in jet manifolds, J. Phys. A, 30 (1997), 1167-1190.
doi: 10.1088/0305-4470/30/4/018. |
[17] |
M. de León and P. R. Rodrigues,
Higher-order mechanical systems with constraints, Internat. J. Theoret. Phys., 31 (1992), 1303-1313.
doi: 10.1007/BF00673930. |
[18] |
M. de León and P. R. Rodrigues, Methods of Differential Geometry in Analytical Mechanics, North-Holland Mathematics Studies, 158, North-Holland Publishing Co., Amsterdam, 1989. |
[19] |
M. A. de León,
A historical review on nonholomic mechanics, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 106 (2012), 191-284.
doi: 10.1007/s13398-011-0046-2. |
[20] |
J. Gaset, X. Gràcia, M. C. Muñoz-Lecanda, X. Rivas and N. Román-Roy, New contributions to the Hamiltonian and Lagrangian contact formalisms for dissipative mechanical systems and their symmetries, Int. J. Geom. Methods Mod. Phys., 17 (2020), 27pp.
doi: 10.1142/S0219887820500905. |
[21] |
F. Gay-Balmaz and H. Yoshimura,
A Lagrangian variational formulation for nonequilibrium thermodynamics. Part I: Discrete systems, J. Geom. Phys., 111 (2017), 169-193.
doi: 10.1016/j.geomphys.2016.08.018. |
[22] |
F. Gay-Balmaz and H. Yoshimura, From Lagrangian mechanics to nonequilibrium thermodynamics: A variational perspective, Entropy, 21 (2019).
doi: 10.3390/e21010008. |
[23] |
B. Georgieva, The variational principle of Hergloz and related resultst, in Geometry, Integrability and Quantization, Avangard Prima, Sofia, 2011, 214–225. |
[24] |
B. Georgieva, R. Guenther and T. Bodurov,
Generalized variational principle of Herglotz for several independent variables. First Noether-type theorem, J. Math. Phys., 44 (2003), 3911-3927.
doi: 10.1063/1.1597419. |
[25] |
H. Goldstein, C. P. Poole and J. L. Safko, Classical Mechanics, 2006. Google Scholar |
[26] |
G. Herglotz, Beruhrungstransformationen, in Lectures at the University of Gottingen, Gottingen, 1930. Google Scholar |
[27] |
A. Ibort, M. de León, G. Marmo and D. M. de Diego, Non-holonomic constrained systems as implicit differential equations. Geometrical structures for physical theories, I (Vietri, 1996), Rend. Sem. Mat. Univ. Politec. Torino, 54 (1996), 295–-317. |
[28] |
A. A. Kirillov,
Local Lie algebras, Uspehi Mat. Nauk, 31 (1976), 57-76.
doi: 10.1070/RM1976v031n04ABEH001556. |
[29] |
J. Koiller,
Reduction of some classical nonholonomic systems with symmetry, Arch. Rational Mech. Anal., 118 (1992), 113-148.
doi: 10.1007/BF00375092. |
[30] |
V. V. Kozlov,
On the integration theory of equations of nonholonomic mechanics, Regul. Chaotic Dyn., 7 (2002), 161-176.
doi: 10.1070/RD2002v007n02ABEH000203. |
[31] |
V. V. Kozlov,
Realization of nonintegrable constraints in classical mechanics, Dokl. Akad. Nauk SSSR, 272 (1983), 550-554.
|
[32] |
A. V. Kremnev and A. S. Kuleshov,
Nonlinear dynamics and stability of the skateboard, Discrete Contin. Dyn. Syst. Ser. S, 3 (2010), 85-103.
doi: 10.3934/dcdss.2010.3.85. |
[33] |
A. S. Kuleshov,
A mathematical model of the snakeboard, Mat. Model., 18 (2006), 37-48.
|
[34] |
P. Libermann and C.-M. Marle, Symplectic Geometry and Analytical Mechanics, Mathematics and Its Applications, 35, D. Reidel Publishing Co., Dordrecht, 1987.
doi: 10.1007/978-94-009-3807-6. |
[35] |
A. Lichnerowicz,
Les variétés de Jacobi et leurs algèbres de Lie associées, J. Math. Pures Appl. (9), 57 (1978), 453-488.
|
[36] |
Q. Liu, P. J. Torres and C. Wang,
Contact Hamiltonian dynamics: Variational principles, invariants, completeness and periodic behavior, Ann. Physics, 395 (2018), 26-44.
doi: 10.1016/j.aop.2018.04.035. |
[37] |
N. K. Moshchuk,
On the motion of Chaplygin's sledge, J. Appl. Math. Mech., 51 (1987), 426-430.
doi: 10.1016/0021-8928(87)90079-7. |
[38] |
J. I. Ne${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over i} }}$mark and N. A. Fufaev, Dynamics of Nonholonomic Systems, Translations of Mathematical Monographs, 33, American Mathematical Society, Providence, RI, 1972.
doi: 10.1090/mmono/033. |
[39] |
V. V. Rumiantsev,
On Hamilton's principle for nonholonomic systems, Prikl. Mat. Mekh., 42 (1978), 387-399.
|
[40] |
V. V. Rumyantsev,
Variational principles for systems with unilateral constraints, J. Appl. Math. Mech., 70 (2006), 808-818.
doi: 10.1016/j.jappmathmech.2007.01.002. |
[41] |
A. A. Simoes, D. M. de Diego, M. de León and M. L. Valcázar, On the geometry of discrete contact mechanics, preprint, arXiv: 2003.11892. Google Scholar |
[42] |
A. A. Simoes, M. de León, M. L. Valcázar and D. M. de Diego,
Contact geometry for simple thermodynamical systems with friction, Proc. A, 476 (2020), 244-259.
doi: 10.1098/rspa.2020.0244. |
[43] |
I. Vaisman, Lectures on the Geometry of Poisson Manifolds, Progress in Mathematics, 118, Birkhäuser Verlag, Basel, 1994.
doi: 10.1007/978-3-0348-8495-2. |
[44] |
A. van der Schaft, Classical thermodynamics revisited: A systems and control perspective, preprint, arXiv: 2010.04213. Google Scholar |
[45] |
M. Vermeeren, A. Bravetti and M. Seri, Contact variational integrators, J. Phys. A, 52 (2019), 28pp.
doi: 10.1088/1751-8121/ab4767. |
[46] |
A. M. Vershik and L. D. Faddeev, Differential geometry and Lagrangian mechanics with constraints, Soviet Physics. Doklady, 17 (1972), 34-36. Google Scholar |
[1] |
Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033 |
[2] |
Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029 |
[3] |
Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024 |
[4] |
Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030 |
[5] |
Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020406 |
[6] |
Xiaoming Wang. Upper semi-continuity of stationary statistical properties of dissipative systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 521-540. doi: 10.3934/dcds.2009.23.521 |
[7] |
João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138 |
[8] |
Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020407 |
[9] |
Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020375 |
[10] |
Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020 |
[11] |
Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020368 |
[12] |
Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176 |
[13] |
Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020110 |
[14] |
Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254 |
[15] |
Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020399 |
[16] |
Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012 |
[17] |
Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020434 |
[18] |
Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020451 |
[19] |
Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020461 |
[20] |
Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268 |
2019 Impact Factor: 0.649
Tools
Metrics
Other articles
by authors
[Back to Top]