[1]
|
R. Brown and C. B. Spencer, Double groupoids and crossed modules, Cahiers Top. Géom. Diff., 17 (1976), 343-362.
|
[2]
|
M. R. Buneci, Groupoid $C^*$-algebras, Surveys in Mathematics and its Applications, 1 (2006), 71-98.
|
[3]
|
F. M. Ciaglia, A. Ibort and G. Marmo, A gentle introduction to schwinger's formulation of quantum mechanics: The groupoid picture, Modern Physics Letters A, 33 (2018), 1850122.
doi: 10.1142/S0217732318501225.
|
[4]
|
F. M. Ciaglia, A. Ibort and G. Marmo, Schwinger's picture of quantum mechanics I: Groupoids, International Journal of Geometric Methods in Modern Physics, 16 (2019), 1950119.
doi: 10.1142/S0219887819501196.
|
[5]
|
F. M. Ciaglia, A. Ibort and G. Marmo, Schwinger's picture of quantum mechanics II: Algebras and observables, International Journal of Geometric Methods in Modern Physics, 16 (2019), 1950136.
doi: 10.1142/S0219887819501366.
|
[6]
|
F. M. Ciaglia, A. Ibort and G. Marmo, Schwinger's picture of quantum mechanics III: the statistical interpretation, International Journal of Geometric Methods in Modern Physics, 16 (2019), 1950165.
doi: 10.1142/s0219887819501652.
|
[7]
|
F. M. Ciaglia, F. Di Cosmo, A. Ibort and G. Marmo, {Schwinger's picture of quantum mechanics IV: composition and independence}, International Journal of Geometric Methods in Modern Physics, 17 (2020) 2050058.
doi: 10.1142/S0219887820500589.
|
[8]
|
F. M. Ciaglia, F. Di Cosmo, A. Ibort and G. Marmo, Schwinger's picture of quantum mechanics, International Journal of Geometric Methods in Modern Physics, 17 (2020), 2050054.
doi: 10.1142/S0219887820500541.
|
[9]
|
R. P. Feynman and L. M. Brown, Feynman's Thesis: A New Approach to Quantum Theory, World Scientific, Singapore, 2005.
|
[10]
|
R. Haag, Local Quantum Physics: Fields, Particles, Algebras, Springer-Verlag, Berlin, 1996.
doi: 10.1007/978-3-642-61458-3.
|
[11]
|
P. Hahn, Haar measure for measure groupoids, Trans. Amer. Math.Soc., 242 (1978), 1-33.
doi: 10.1090/S0002-9947-1978-0496796-6.
|
[12]
|
A. Ibort and M. A. Rodriguez, An Introduction to the Theory of Groups, Groupoids and Their Representations, CRC Press, Boca Raton, 2019.
doi: 10.1201/b22019.
|
[13]
|
I. Kolář, P. W. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer-Verlag, Berlin Heidelberg, 1993.
doi: 10.1007/978-3-662-02950-3.
|
[14]
|
N. P. Landsman, Mathematical Topics Between Classical and Quantum Mechanics, Springer-Verlag, New York, 1998.
doi: 10.1007/978-1-4612-1680-3.
|
[15]
|
K. C. H. Mackenzie, General Theory of Lie Groupoids and Lie Algebroids, Cambridge University Press, Cambridge, 2005.
doi: 10.1017/CBO9781107325883.
|
[16]
|
G. W. Mackey, Ergodic theory, group theory and differential geometry, Proc. Nat. Acad. Sci. USA, 50 (1963), 1184-1191.
doi: 10.1073/pnas.50.6.1184.
|
[17]
|
G. W. Mackey, Ergodic theory and virtual groups, Math. Ann., 166 (1966), 187-207.
doi: 10.1007/BF01361167.
|
[18]
|
F. J. Murray and J. Von Neumann, On rings of operators, Ann. Math., 37 (1936), 116-229.
doi: 10.2307/1968693.
|
[19]
|
J. Renault, A Groupoid Approach to $C^{\star }-$Algebras, Springer-Verlag, Berlin, 1980.
|
[20]
|
E. Riehl, Categorical Homotopy Theory, Cambridge University Press, Cambridge, 2014.
doi: 10.1017/CBO9781107261457.
|
[21]
|
J. Schwinger, Quantum Kinematics and Dynamics, CRC Press, Boca Raton, 2000.
|
[22]
|
J. Schwinger, The theory of quantized fields. I, Physical Reviews, 82 (1951), 914-927.
doi: 10.1103/PhysRev.82.914.
|
[23]
|
R. D. Sorkin, Quantum mechanics as quantum measure theory, Modern Physics Letters A, 9 (1994), 3119-3127.
doi: 10.1142/S021773239400294X.
|
[24]
|
M. Takesaki, Theory of Operator Algebras I, Springer-Verlag, Berlin, 2002.
|
[25]
|
A. Weinstein, Groupoids: Unifying internal and external symmetry, Notices of the AMS, 43 (1996), 744–752.
|
[26]
|
E. P. Wigner, Group Theory and its Applications to the Quantum Mechanics of Atomic Spectra, Academic Press, London, 1959.
|