\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Schwinger's picture of quantum mechanics: 2-groupoids and symmetries

  • * Corresponding author

    * Corresponding author 
Abstract Full Text(HTML) Figure(2) / Table(1) Related Papers Cited by
  • Starting from the groupoid approach to Schwinger's picture of Quantum Mechanics, a proposal for the description of symmetries in this framework is advanced. It is shown that, given a groupoid $ G\rightrightarrows \Omega $ associated with a (quantum) system, there are two possible descriptions of its symmetries, one "microscopic", the other one "global". The microscopic point of view leads to the introduction of an additional layer over the grupoid $ G $, giving rise to a suitable algebraic structure of 2-groupoid. On the other hand, taking advantage of the notion of group of bisections of a given groupoid, the global perspective allows to construct a group of symmetries out of a 2-groupoid. The latter notion allows to introduce an analog of the Wigner's theorem for quantum symmetries in the groupoid approach to Quantum Mechanics.

    Mathematics Subject Classification: Primary: 81R99, 20L05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  A schematic representation of a bisection: the red line connects the elements of the subset $ b_1\subset G $ whilst the dotted arrows represent the map $ b_s,b_t,s\mid_b,t\mid_b $. The red arrows denotes the bijective maps $ \varphi_{b_1} $ associated with the bisection $ b_1 $

    Figure 2.  Schematic representation of the group of bisections $ \mathscr{G} $ of the groupoid $ C_2(4) $

    Table 1.  Multiplication table of the group $ \mathscr{G} $ of bisections of the groupoid $ C_2(4)\,\rightrightarrows \,\Omega_2 $

    0 $ b_e $ $ b_+ $ $ b_- $ $ b_g $ $ b_1 $ $ b_2 $ $ b_3 $ $ b_4 $
    $ b_e $ $ b_e $ $ b_+ $ $ b_- $ $ b_g $ $ b_1 $ $ b_2 $ $ b_3 $ $ b_4 $
    $ b_+ $ $ b_+ $ $ b_e $ $ b_g $ $ b_- $ $ b_3 $ $ b_4 $ $ b_1 $ $ b_2 $
    $ b_- $ $ b_- $ $ b_g $ $ b_e $ $ b_+ $ $ b_2 $ $ b_1 $ $ b_4 $ $ b_3 $
    $ b_g $ $ b_g $ $ b_- $ $ b_+ $ $ b_e $ $ b_4 $ $ b_3 $ $ b_2 $ $ b_1 $
    $ b_1 $ $ b_1 $ $ b_2 $ $ b_3 $ $ b_4 $ $ b_e $ $ b_+ $ $ b_- $ $ b_g $
    $ b_2 $ $ b_2 $ $ b_1 $ $ b_4 $ $ b_3 $ $ b_- $ $ b_g $ $ b_e $ $ b_+ $
    $ b_3 $ $ b_3 $ $ b_4 $ $ b_1 $ $ b_2 $ $ b_+ $ $ b_e $ $ b_g $ $ b_- $
    $ b_4 $ $ b_4 $ $ b_3 $ $ b_2 $ $ b_1 $ $ b_g $ $ b_- $ $ b_+ $ $ b_e $
     | Show Table
    DownLoad: CSV
  • [1] R. Brown and C. B. Spencer, Double groupoids and crossed modules, Cahiers Top. Géom. Diff., 17 (1976), 343-362. 
    [2] M. R. Buneci, Groupoid $C^*$-algebras, Surveys in Mathematics and its Applications, 1 (2006), 71-98. 
    [3] F. M. Ciaglia, A. Ibort and G. Marmo, A gentle introduction to schwinger's formulation of quantum mechanics: The groupoid picture, Modern Physics Letters A, 33 (2018), 1850122. doi: 10.1142/S0217732318501225.
    [4] F. M. Ciaglia, A. Ibort and G. Marmo, Schwinger's picture of quantum mechanics I: Groupoids, International Journal of Geometric Methods in Modern Physics, 16 (2019), 1950119. doi: 10.1142/S0219887819501196.
    [5] F. M. Ciaglia, A. Ibort and G. Marmo, Schwinger's picture of quantum mechanics II: Algebras and observables, International Journal of Geometric Methods in Modern Physics, 16 (2019), 1950136. doi: 10.1142/S0219887819501366.
    [6] F. M. Ciaglia, A. Ibort and G. Marmo, Schwinger's picture of quantum mechanics III: the statistical interpretation, International Journal of Geometric Methods in Modern Physics, 16 (2019), 1950165. doi: 10.1142/s0219887819501652.
    [7] F. M. Ciaglia, F. Di Cosmo, A. Ibort and G. Marmo, {Schwinger's picture of quantum mechanics IV: composition and independence}, International Journal of Geometric Methods in Modern Physics, 17 (2020) 2050058. doi: 10.1142/S0219887820500589.
    [8] F. M. Ciaglia, F. Di Cosmo, A. Ibort and G. Marmo, Schwinger's picture of quantum mechanics, International Journal of Geometric Methods in Modern Physics, 17 (2020), 2050054. doi: 10.1142/S0219887820500541.
    [9] R. P. Feynman and L. M. Brown, Feynman's Thesis: A New Approach to Quantum Theory, World Scientific, Singapore, 2005.
    [10] R. Haag, Local Quantum Physics: Fields, Particles, Algebras, Springer-Verlag, Berlin, 1996. doi: 10.1007/978-3-642-61458-3.
    [11] P. Hahn, Haar measure for measure groupoids, Trans. Amer. Math.Soc., 242 (1978), 1-33.  doi: 10.1090/S0002-9947-1978-0496796-6.
    [12] A. Ibort and  M. A. RodriguezAn Introduction to the Theory of Groups, Groupoids and Their Representations, CRC Press, Boca Raton, 2019.  doi: 10.1201/b22019.
    [13] I. Kolář, P. W. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer-Verlag, Berlin Heidelberg, 1993. doi: 10.1007/978-3-662-02950-3.
    [14] N. P. Landsman, Mathematical Topics Between Classical and Quantum Mechanics, Springer-Verlag, New York, 1998. doi: 10.1007/978-1-4612-1680-3.
    [15] K. C. H. MackenzieGeneral Theory of Lie Groupoids and Lie Algebroids, Cambridge University Press, Cambridge, 2005.  doi: 10.1017/CBO9781107325883.
    [16] G. W. Mackey, Ergodic theory, group theory and differential geometry, Proc. Nat. Acad. Sci. USA, 50 (1963), 1184-1191.  doi: 10.1073/pnas.50.6.1184.
    [17] G. W. Mackey, Ergodic theory and virtual groups, Math. Ann., 166 (1966), 187-207.  doi: 10.1007/BF01361167.
    [18] F. J. Murray and J. Von Neumann, On rings of operators, Ann. Math., 37 (1936), 116-229.  doi: 10.2307/1968693.
    [19] J. Renault, A Groupoid Approach to $C^{\star }-$Algebras, Springer-Verlag, Berlin, 1980.
    [20] E. RiehlCategorical Homotopy Theory, Cambridge University Press, Cambridge, 2014.  doi: 10.1017/CBO9781107261457.
    [21] J. SchwingerQuantum Kinematics and Dynamics, CRC Press, Boca Raton, 2000. 
    [22] J. Schwinger, The theory of quantized fields. I, Physical Reviews, 82 (1951), 914-927.  doi: 10.1103/PhysRev.82.914.
    [23] R. D. Sorkin, Quantum mechanics as quantum measure theory, Modern Physics Letters A, 9 (1994), 3119-3127.  doi: 10.1142/S021773239400294X.
    [24] M. Takesaki, Theory of Operator Algebras I, Springer-Verlag, Berlin, 2002.
    [25] A. Weinstein, Groupoids: Unifying internal and external symmetry, Notices of the AMS, 43 (1996), 744–752.
    [26] E. P. WignerGroup Theory and its Applications to the Quantum Mechanics of Atomic Spectra, Academic Press, London, 1959. 
  • 加载中

Figures(2)

Tables(1)

SHARE

Article Metrics

HTML views(1191) PDF downloads(212) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return