• Previous Article
    A bundle framework for observer design on smooth manifolds with symmetry
  • JGM Home
  • This Issue
  • Next Article
    Quasi-bi-Hamiltonian structures and superintegrability: Study of a Kepler-related family of systems endowed with generalized Runge-Lenz integrals of motion
June  2021, 13(2): 209-246. doi: 10.3934/jgm.2021011

Matched pair analysis of the Vlasov plasma

1. 

Department of Mathematics, Gebze Technical University, 41400 Gebze-Kocaeli, Turkey

2. 

Department of Mathematics, Işık University, 34980 Şile-İstanbul, Turkey

* Corresponding author: Serkan Sütlü

Received  July 2020 Revised  January 2021 Published  June 2021 Early access  May 2021

We present the Hamiltonian (Lie-Poisson) analysis of the Vlasov plasma, and the dynamics of its kinetic moments, from the matched pair decomposition point of view. We express these (Lie-Poisson) systems as couplings of mutually interacting (Lie-Poisson) subdynamics. The mutual interaction is beyond the well-known semi-direct product theory. Accordingly, as the geometric framework of the present discussion, we address the matched pair Lie-Poisson formulation allowing mutual interactions. Moreover, both for the kinetic moments and the Vlasov plasma cases, we observe that one of the constitutive subdynamics is the compressible isentropic fluid flow, and the other is the dynamics of the kinetic moments of order $ \geq 2 $. In this regard, the algebraic/geometric (matched pair) decomposition that we offer, is in perfect harmony with the physical intuition. To complete the discussion, we present a momentum formulation of the Vlasov plasma, along with its matched pair decomposition.

Citation: Oǧul Esen, Serkan Sütlü. Matched pair analysis of the Vlasov plasma. Journal of Geometric Mechanics, 2021, 13 (2) : 209-246. doi: 10.3934/jgm.2021011
References:
[1]

R. Abraham and J. E. Marsden, Foundations of Mechanics, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978.  Google Scholar

[2]

A. L. Agore and G. Militaru, Extending structures for Lie algebras, Monatsh. Math., 174 (2014), 169-193.  doi: 10.1007/s00605-013-0537-7.  Google Scholar

[3]

V. I. Arnol'd, Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics, 60, Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4757-2063-1.  Google Scholar

[4]

E. Binz, J. Śniatycki and H. Fischer, Geometry of Classical Fields, North-Holland Mathematics Studies, 154, Mathematical Notes, 123, North-Holland Publishing Co., Amsterdam, 1988.  Google Scholar

[5]

F. J. Bloore and M. Assimakopoulos, A natural one-form for the Schouten concomitant, Internat. J. Theoret. Phys., 18 (1979), 233-238.  doi: 10.1007/BF00671759.  Google Scholar

[6]

M. G. Brin, On the Zappa-Szép product, Comm. Algebra, 33 (2005), 393-424.  doi: 10.1081/AGB-200047404.  Google Scholar

[7]

T. Brzeziński, Crossed products by a coalgebra, Comm. Algebra, 25 (1997), 3551-3575.  doi: 10.1080/00927879708826070.  Google Scholar

[8]

C. Cercignani, V. I. Gerasimenko and D. Y. Petrina, Many-Particle Dynamics and Kinetic Equations, Mathematics and its Applications, 420, Kluwer Academic Publishers Group, Dordrecht, 1997. doi: 10.1007/978-94-011-5558-8.  Google Scholar

[9] S. Chapman and T. G. Cowling, The Mathematical Theory of Nonuniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction, and Diffusion in Gases, Cambridge University Press, New York, 1960.   Google Scholar
[10]

S. S. Chern, W. H. Chen and K. S. Lam, Lectures on Differential Geometry, Series on University Mathematics, 1, World Scientific Publishing Co. Inc., River Edge, NJ, 1999. doi: 10.1142/3812.  Google Scholar

[11]

M. de León and P. R. Rodrigues, Methods of Differential Geometry in Analytical Mechanics, North-Holland Mathematics Studies, 158, North-Holland Publishing Co., Amsterdam, 1989.  Google Scholar

[12]

O. Esen, M. Grmela, H. Gümral and M. Pavelka, Lifts of symmetric tensors: Fluids, plasma, and Grad hierarchy, Entropy, 21 (2019), 33pp. doi: 10.3390/e21090907.  Google Scholar

[13]

O. Esen, P. Guha and S. Sütlü, Bicocycle double cross constructions, preprint, arXiv: 2104.08973. Google Scholar

[14]

O. Esen and H. Gümral, Geometry of plasma dynamics II: Lie algebra of Hamiltonian vector fields, J. Geom. Mech., 4 (2012), 239-269.  doi: 10.3934/jgm.2012.4.239.  Google Scholar

[15]

O. Esen and H. Gümral, Lifts, jets and reduced dynamics, Int. J. Geom. Methods Mod. Phys., 8 (2011), 331-344.  doi: 10.1142/S0219887811005166.  Google Scholar

[16]

O. Esen and H. Gümral, Tulczyjew's triplet for Lie groups I: Trivializations and reductions, J. Lie Theory, 24 (2014), 1115-1160.  Google Scholar

[17]

O. Esen and H. Gümral, Tulczyjew's triplet for Lie groups II: Dynamics, J. Lie Theory, 27 (2017), 329-356.  Google Scholar

[18]

O. Esen, M. Kudeyt, and S. Sütlü, Second order Lagrangian dynamics on double cross product groups, J. Geom. Phys. 159 (2021), 18pp. doi: 10.1016/j.geomphys.2020.103934.  Google Scholar

[19]

O. EsenM. Pavelka and M. Grmela, Hamiltonian coupling of electromagnetic field and matter, Int. J. Adv. Eng. Sci. Appl. Math., 9 (2017), 3-20.  doi: 10.1007/s12572-017-0179-4.  Google Scholar

[20]

O. Esen and S. Sütlü, Discrete dynamical systems over double cross-product Lie groupoids, Int. J. Geom. Methods Mod. Phys., 18 (2021), 40pp. doi: 10.1142/S0219887821500572.  Google Scholar

[21]

O. Esen and S. Sütlü, Hamiltonian dynamics on matched pairs, Int. J. Geom. Methods Mod. Phys., 13 (2016), 24pp. doi: 10.1142/S0219887816501280.  Google Scholar

[22]

O. Esen and S. Sütlü, Lagrangian dynamics on matched pairs, J. Geom. Phys., 111 (2017), 142-157.  doi: 10.1016/j.geomphys.2016.10.005.  Google Scholar

[23]

D. B. Fuks, Cohomology of Infinite-Dimensional Lie Algebras, Contemporary Soviet Mathematics, Consultants Bureau, New York, 1986.  Google Scholar

[24]

I. M. Gel'fandD. I. Kalinin and D. B. Fuks, The cohomology of the Lie algebra of Hamiltonian formal vector fields, Funkcional. Anal. i Priložen., 6 (1972), 25-29.   Google Scholar

[25]

J. Gibbons, Collisionless Boltzmann equations and integrable moment equations, Phys. D, 3 (1981), 503-511.  doi: 10.1016/0167-2789(81)90036-1.  Google Scholar

[26]

J. GibbonsD. D. Holm and C. Tronci, Geometry of Vlasov kinetic moments: A bosonic Fock space for the symmetric Schouten bracket, Phys. Lett. A, 372 (2008), 4184-4196.  doi: 10.1016/j.physleta.2008.03.034.  Google Scholar

[27]

J. GibbonsD. D. Holm and C. Tronci, Vlasov moments, integrable systems and singular solutions, Phys. Lett. A, 372 (2008), 1024-1033.  doi: 10.1016/j.physleta.2007.08.054.  Google Scholar

[28]

K. Grabowska and M. Zając, The Tulczyjew triple in mechanics on a Lie group, J. Geom. Mech., 8 (2016), 413-435.  doi: 10.3934/jgm.2016014.  Google Scholar

[29]

H. Grad, On Boltzmann's $H$-theorem, J. Soc. Indust. Appl. Math., 13 (1965), 259-277.  doi: 10.1137/0113016.  Google Scholar

[30]

M. Grmela, L. Hong, D. Jou, G. Lebon and M. Pavelka, Hamiltonian and Godunov structures of the Grad hierarchy, Phys. Rev. E, 95 (2017). doi: 10.1103/PhysRevE.95.033121.  Google Scholar

[31]

H. Gümral, Geometry of plasma dynamics I. Group of canonical diffeomorphisms, J. Math. Phys., 51 (2010), 23pp. doi: 10.1063/1.3429581.  Google Scholar

[32] D. D. Holm, Geometric Mechanics. Part I. Dynamics and Symmetry, Imperial College Press, London, 2008.  doi: 10.1142/p557.  Google Scholar
[33] D. D. Holm, Geometric Mechanics. Part II. Rotating, Translating and Rolling, Imperial College Press, London, 2011.   Google Scholar
[34]

D. D. Holm and B. A. Kupershmidt, Noncanonical Hamiltonian formulation of ideal magnetohydrodynamics, Phys. D, 7 (1983), 330-333.  doi: 10.1016/0167-2789(83)90136-7.  Google Scholar

[35]

D. D. Holm, T. Schmah and C. Stoica, Geometric Mechanics and Symmetry. From Finite to Infinite Dimensions, Oxford Texts in Applied and Engineering Mathematics, 12, Oxford University Press, Oxford, 2009.  Google Scholar

[36]

D. D. Holm and C. Tronci, Geodesic Vlasov equations and their integrable moment closures, J. Geom. Mech., 1 (2009), 181-208.  doi: 10.3934/jgm.2009.1.181.  Google Scholar

[37]

B. Janssens and C. Vizman, Central extensions of Lie algebras of symplectic and divergence free vector fields, in Geometry of Jets and Fields, Banach Center Publ., 110, Polish Acad. Sci. Inst. Math., Warsaw, 2016,105-114. doi: 10.4064/bc110-0-7.  Google Scholar

[38]

G. I. Kac, Extensions of groups to ring groups, Math. USSR Sb., 5 (1968), 451-474.  doi: 10.1070/SM1968v005n03ABEH003627.  Google Scholar

[39]

M. Kikkawa, Geometry of homogeneous Lie loops, Hiroshima Math. J., 5 (1975), 141-179.  doi: 10.32917/hmj/1206136626.  Google Scholar

[40]

M. K. Kinyon and A. Weinstein, Leibniz algebras, Courant algebroids, and multiplications on reductive homogeneous spaces, Amer. J. Math., 123 (2001), 525-550.  doi: 10.1353/ajm.2001.0017.  Google Scholar

[41]

I. Kolář, P. W. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993. doi: 10.1007/978-3-662-02950-3.  Google Scholar

[42]

Y. Kosmann-Schwarzbach and F. Magri, Poisson-Lie groups and complete integrability. I. Drinfel'd bialgebras, dual extensions and their canonical representations, Ann. Inst. H. Poincaré Phys. Théor., 49 (1988), 433-460.   Google Scholar

[43]

C. D. Levermore, Moment closure hierarchies for kinetic theories, J. Statist. Phys., 83 (1996), 1021-1065.  doi: 10.1007/BF02179552.  Google Scholar

[44]

P. Libermann and C.-M. Marle, Symplectic Geometry and Analytical Mechanics, Mathematics and its Applications, 35, Reidel Publishing Co., Dordrecht, 1987. doi: 10.1007/978-94-009-3807-6.  Google Scholar

[45]

J.-H. Lu and A. Weinstein, Poisson Lie groups, dressing transformations, and Bruhat decompositions, J. Differential Geom., 31 (1990), 501-526.  doi: 10.4310/jdg/1214444324.  Google Scholar

[46] S. Majid, Foundations of Quantum Group Theory, Cambridge University Press, Cambridge, 1995.  doi: 10.1017/CBO9780511613104.  Google Scholar
[47]

S. Majid, Matched pairs of Lie groups associated to solutions of the Yang-Baxter equations, Pacific J. Math., 141 (1990), 311-332.  doi: 10.2140/pjm.1990.141.311.  Google Scholar

[48]

S. Majid, Physics for algebraists: Non-commutative and non-cocommutative Hopf algebras by a bicrossproduct construction, J. Algebra, 130 (1990), 17-64.  doi: 10.1016/0021-8693(90)90099-A.  Google Scholar

[49]

C.-M. Marle, The Schouten-Nijenhuis bracket and interior products, J. Geom. Phys., 23 (1997), 350-359.  doi: 10.1016/S0393-0440(97)80009-5.  Google Scholar

[50]

J. Marsden and A. Weinstein, Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids, Phys. D, 7 (1983), 305-323.  doi: 10.1016/0167-2789(83)90134-3.  Google Scholar

[51]

J. E. Marsden, P. J. Morrison and A. Weinstein, The Hamiltonian structure of the BBGKY hierarchy equations, in Fluids and Plasmas: Geometry and Dynamics, Contemp. Math., 28, Amer. Math. Soc., Providence, RI, 1984,115-124. doi: 10.1090/conm/028/751977.  Google Scholar

[52]

J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry. A Basic Exposition of Classical Mechanical Systems, Texts in Applied Mathematics, 17, Springer-Verlag, New York, 1999. doi: 10.1007/978-0-387-21792-5.  Google Scholar

[53]

J. E. Marsden, T. Ratiu and A. Weinstein, Reduction and Hamiltonian structures on duals of semidirect product Lie algebras, in Fluids and Plasmas: Geometry and Dynamics, Contemp. Math., 28, Amer. Math. Soc., Providence, RI, 1984, 55-100. doi: 10.1090/conm/028/751975.  Google Scholar

[54]

J. E. MarsdenT. S. Raţiu and A. Weinstein, Semidirect products and reduction in mechanics, Trans. Amer. Math. Soc., 281 (1984), 147-177.  doi: 10.1090/S0002-9947-1984-0719663-1.  Google Scholar

[55]

J. E. Marsden and A. Weinstein, The Hamiltonian structure of the Maxwell-Vlasov equations, Phys. D, 4 (1981/82), 394-406.  doi: 10.1016/0167-2789(82)90043-4.  Google Scholar

[56]

J. E. MarsdenA. WeinsteinT. RatiuR. Schmid and R. G. Spencer, Hamiltonian systems with symmetry, coadjoint orbits and plasma physics, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur., 117 (1983), 289-340.   Google Scholar

[57]

I. Moerdijk and G. E. Reyes, Models for Smooth Infinitesimal Analysis, Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4757-4143-8.  Google Scholar

[58]

P. J. Morrison, Hamiltonian Field Description of the One-Dimensional Poisson-Vlasov Equations, Tech. report, Princeton Univ., NJ (USA), Plasma Physics Lab., 1981. doi: 10.2172/6423520.  Google Scholar

[59]

P. J. Morrison, Poisson brackets for fluids and plasmas, AIP Conference Proceedings, 88, American Institute of Physics, 1982, 13-46. doi: 10.1063/1.33633.  Google Scholar

[60]

H. Moscovici and B. Rangipour, Hopf algebras of primitive Lie pseudogroups and Hopf cyclic cohomology, Adv. Math., 220 (2009), 706-790.  doi: 10.1016/j.aim.2008.09.017.  Google Scholar

[61]

L. K. Norris, Generalized symplectic geometry on the frame bundle of a manifold, in Differential Geometry: Geometry in Mathematical Physics and Related Topics, Proc. Sympos. Pure Math., 54, Part 2, Amer. Math. Soc., Providence, RI, 1993,435-465.  Google Scholar

[62]

P. J. Olver, Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics, 107, Springer-Verlag, New York, 1993.  Google Scholar

[63]

M. PavelkaV. KlikaO. Esen and M. Grmela, A hierarchy of Poisson brackets in non-equilibrium thermodynamics, Phys. D, 335 (2016), 54-69.  doi: 10.1016/j.physd.2016.06.011.  Google Scholar

[64]

J. Perchik, Cohomology of Hamiltonian and Related Formal Vector Field Lie Algebras, Ph.D thesis, Harvard University in Cambridge, 1975.  Google Scholar

[65]

J. Perchik, Cohomology of Hamiltonian and related formal vector field Lie algebras, Topology, 15 (1976), 395-404.  doi: 10.1016/0040-9383(76)90033-1.  Google Scholar

[66]

M. Perin, C. Chandre, P. J. Morrison and E. Tassi, Hamiltonian closures for fluid models with four moments by dimensional analysis, J. Phys. A, 48 (2015), 24pp. doi: 10.1088/1751-8113/48/27/275501.  Google Scholar

[67]

B. Perthame, Higher moments for kinetic equations: The Vlasov-Poisson and Fokker-Planck cases, Math. Methods Appl. Sci., 13 (1990), 441-452.  doi: 10.1002/mma.1670130508.  Google Scholar

[68]

D. J. Saunders, The Geometry of Jet Bundles, London Mathematical Society Lecture Note Series, 142, Cambridge University Press, Cambridge, 1989. doi: 10.1017/CBO9780511526411.  Google Scholar

[69]

J. A. Schouten, Ueber Differentialkomitanten zweier kontravarianter Grössen, Nederl. Akad. Wetensch. Proc., 43 (1940), 449-452.   Google Scholar

[70]

S. Sternberg, Infinite Lie groups and the formal aspects of dynamical systems, J. Math. Mech., 10 (1961), 451-474.   Google Scholar

[71]

M. Takeuchi, Matched pairs of groups and bismash products of Hopf algebras, Comm. Algebra, 9 (1981), 841-882.  doi: 10.1080/00927878108822621.  Google Scholar

[72]

C. Tronci, Geometric Dynamics of Vlasov Kinetic Theory and Its Moments, Ph.D thesis, Imperial College in London, 2008. Google Scholar

[73]

W. M. Tulczyjew, The Legendre transformation, Ann. Inst. H. Poincaré Sect. A (N.S.), 27 (1977), 101-114.   Google Scholar

[74]

P. VágnerM. Pavelka and O. Esen, Multiscale thermodynamics of charged mixtures, Contin. Mech. Thermodyn., 33 (2021), 237-268.  doi: 10.1007/s00161-020-00900-5.  Google Scholar

[75]

V. Vedenyapin, A. Sinitsyn and E. Dulov, Kinetic Boltzmann, Vlasov and Related Equations, Elsevier, Inc., Amsterdam, 2011.  Google Scholar

[76]

K. Yamaguti, On the Lie triple system and its generalization, J. Sci. Hiroshima Univ. Ser. A, 21 (1957/58), 155-160.  doi: 10.32917/hmj/1555639527.  Google Scholar

[77]

K. Yano and E. M. Patterson, Vertical and complete lifts from a manifold to its cotangent bundle, J. Math. Soc. Japan, 19 (1967), 91-113.  doi: 10.2969/jmsj/01910091.  Google Scholar

[78]

T. Zhang, Double cross biproduct and bi-cycle bicrossproduct Lie bialgebras, J. Gen. Lie Theory Appl., 4 (2010), 16pp. doi: 10.4303/jglta/S090602.  Google Scholar

show all references

References:
[1]

R. Abraham and J. E. Marsden, Foundations of Mechanics, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978.  Google Scholar

[2]

A. L. Agore and G. Militaru, Extending structures for Lie algebras, Monatsh. Math., 174 (2014), 169-193.  doi: 10.1007/s00605-013-0537-7.  Google Scholar

[3]

V. I. Arnol'd, Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics, 60, Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4757-2063-1.  Google Scholar

[4]

E. Binz, J. Śniatycki and H. Fischer, Geometry of Classical Fields, North-Holland Mathematics Studies, 154, Mathematical Notes, 123, North-Holland Publishing Co., Amsterdam, 1988.  Google Scholar

[5]

F. J. Bloore and M. Assimakopoulos, A natural one-form for the Schouten concomitant, Internat. J. Theoret. Phys., 18 (1979), 233-238.  doi: 10.1007/BF00671759.  Google Scholar

[6]

M. G. Brin, On the Zappa-Szép product, Comm. Algebra, 33 (2005), 393-424.  doi: 10.1081/AGB-200047404.  Google Scholar

[7]

T. Brzeziński, Crossed products by a coalgebra, Comm. Algebra, 25 (1997), 3551-3575.  doi: 10.1080/00927879708826070.  Google Scholar

[8]

C. Cercignani, V. I. Gerasimenko and D. Y. Petrina, Many-Particle Dynamics and Kinetic Equations, Mathematics and its Applications, 420, Kluwer Academic Publishers Group, Dordrecht, 1997. doi: 10.1007/978-94-011-5558-8.  Google Scholar

[9] S. Chapman and T. G. Cowling, The Mathematical Theory of Nonuniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction, and Diffusion in Gases, Cambridge University Press, New York, 1960.   Google Scholar
[10]

S. S. Chern, W. H. Chen and K. S. Lam, Lectures on Differential Geometry, Series on University Mathematics, 1, World Scientific Publishing Co. Inc., River Edge, NJ, 1999. doi: 10.1142/3812.  Google Scholar

[11]

M. de León and P. R. Rodrigues, Methods of Differential Geometry in Analytical Mechanics, North-Holland Mathematics Studies, 158, North-Holland Publishing Co., Amsterdam, 1989.  Google Scholar

[12]

O. Esen, M. Grmela, H. Gümral and M. Pavelka, Lifts of symmetric tensors: Fluids, plasma, and Grad hierarchy, Entropy, 21 (2019), 33pp. doi: 10.3390/e21090907.  Google Scholar

[13]

O. Esen, P. Guha and S. Sütlü, Bicocycle double cross constructions, preprint, arXiv: 2104.08973. Google Scholar

[14]

O. Esen and H. Gümral, Geometry of plasma dynamics II: Lie algebra of Hamiltonian vector fields, J. Geom. Mech., 4 (2012), 239-269.  doi: 10.3934/jgm.2012.4.239.  Google Scholar

[15]

O. Esen and H. Gümral, Lifts, jets and reduced dynamics, Int. J. Geom. Methods Mod. Phys., 8 (2011), 331-344.  doi: 10.1142/S0219887811005166.  Google Scholar

[16]

O. Esen and H. Gümral, Tulczyjew's triplet for Lie groups I: Trivializations and reductions, J. Lie Theory, 24 (2014), 1115-1160.  Google Scholar

[17]

O. Esen and H. Gümral, Tulczyjew's triplet for Lie groups II: Dynamics, J. Lie Theory, 27 (2017), 329-356.  Google Scholar

[18]

O. Esen, M. Kudeyt, and S. Sütlü, Second order Lagrangian dynamics on double cross product groups, J. Geom. Phys. 159 (2021), 18pp. doi: 10.1016/j.geomphys.2020.103934.  Google Scholar

[19]

O. EsenM. Pavelka and M. Grmela, Hamiltonian coupling of electromagnetic field and matter, Int. J. Adv. Eng. Sci. Appl. Math., 9 (2017), 3-20.  doi: 10.1007/s12572-017-0179-4.  Google Scholar

[20]

O. Esen and S. Sütlü, Discrete dynamical systems over double cross-product Lie groupoids, Int. J. Geom. Methods Mod. Phys., 18 (2021), 40pp. doi: 10.1142/S0219887821500572.  Google Scholar

[21]

O. Esen and S. Sütlü, Hamiltonian dynamics on matched pairs, Int. J. Geom. Methods Mod. Phys., 13 (2016), 24pp. doi: 10.1142/S0219887816501280.  Google Scholar

[22]

O. Esen and S. Sütlü, Lagrangian dynamics on matched pairs, J. Geom. Phys., 111 (2017), 142-157.  doi: 10.1016/j.geomphys.2016.10.005.  Google Scholar

[23]

D. B. Fuks, Cohomology of Infinite-Dimensional Lie Algebras, Contemporary Soviet Mathematics, Consultants Bureau, New York, 1986.  Google Scholar

[24]

I. M. Gel'fandD. I. Kalinin and D. B. Fuks, The cohomology of the Lie algebra of Hamiltonian formal vector fields, Funkcional. Anal. i Priložen., 6 (1972), 25-29.   Google Scholar

[25]

J. Gibbons, Collisionless Boltzmann equations and integrable moment equations, Phys. D, 3 (1981), 503-511.  doi: 10.1016/0167-2789(81)90036-1.  Google Scholar

[26]

J. GibbonsD. D. Holm and C. Tronci, Geometry of Vlasov kinetic moments: A bosonic Fock space for the symmetric Schouten bracket, Phys. Lett. A, 372 (2008), 4184-4196.  doi: 10.1016/j.physleta.2008.03.034.  Google Scholar

[27]

J. GibbonsD. D. Holm and C. Tronci, Vlasov moments, integrable systems and singular solutions, Phys. Lett. A, 372 (2008), 1024-1033.  doi: 10.1016/j.physleta.2007.08.054.  Google Scholar

[28]

K. Grabowska and M. Zając, The Tulczyjew triple in mechanics on a Lie group, J. Geom. Mech., 8 (2016), 413-435.  doi: 10.3934/jgm.2016014.  Google Scholar

[29]

H. Grad, On Boltzmann's $H$-theorem, J. Soc. Indust. Appl. Math., 13 (1965), 259-277.  doi: 10.1137/0113016.  Google Scholar

[30]

M. Grmela, L. Hong, D. Jou, G. Lebon and M. Pavelka, Hamiltonian and Godunov structures of the Grad hierarchy, Phys. Rev. E, 95 (2017). doi: 10.1103/PhysRevE.95.033121.  Google Scholar

[31]

H. Gümral, Geometry of plasma dynamics I. Group of canonical diffeomorphisms, J. Math. Phys., 51 (2010), 23pp. doi: 10.1063/1.3429581.  Google Scholar

[32] D. D. Holm, Geometric Mechanics. Part I. Dynamics and Symmetry, Imperial College Press, London, 2008.  doi: 10.1142/p557.  Google Scholar
[33] D. D. Holm, Geometric Mechanics. Part II. Rotating, Translating and Rolling, Imperial College Press, London, 2011.   Google Scholar
[34]

D. D. Holm and B. A. Kupershmidt, Noncanonical Hamiltonian formulation of ideal magnetohydrodynamics, Phys. D, 7 (1983), 330-333.  doi: 10.1016/0167-2789(83)90136-7.  Google Scholar

[35]

D. D. Holm, T. Schmah and C. Stoica, Geometric Mechanics and Symmetry. From Finite to Infinite Dimensions, Oxford Texts in Applied and Engineering Mathematics, 12, Oxford University Press, Oxford, 2009.  Google Scholar

[36]

D. D. Holm and C. Tronci, Geodesic Vlasov equations and their integrable moment closures, J. Geom. Mech., 1 (2009), 181-208.  doi: 10.3934/jgm.2009.1.181.  Google Scholar

[37]

B. Janssens and C. Vizman, Central extensions of Lie algebras of symplectic and divergence free vector fields, in Geometry of Jets and Fields, Banach Center Publ., 110, Polish Acad. Sci. Inst. Math., Warsaw, 2016,105-114. doi: 10.4064/bc110-0-7.  Google Scholar

[38]

G. I. Kac, Extensions of groups to ring groups, Math. USSR Sb., 5 (1968), 451-474.  doi: 10.1070/SM1968v005n03ABEH003627.  Google Scholar

[39]

M. Kikkawa, Geometry of homogeneous Lie loops, Hiroshima Math. J., 5 (1975), 141-179.  doi: 10.32917/hmj/1206136626.  Google Scholar

[40]

M. K. Kinyon and A. Weinstein, Leibniz algebras, Courant algebroids, and multiplications on reductive homogeneous spaces, Amer. J. Math., 123 (2001), 525-550.  doi: 10.1353/ajm.2001.0017.  Google Scholar

[41]

I. Kolář, P. W. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993. doi: 10.1007/978-3-662-02950-3.  Google Scholar

[42]

Y. Kosmann-Schwarzbach and F. Magri, Poisson-Lie groups and complete integrability. I. Drinfel'd bialgebras, dual extensions and their canonical representations, Ann. Inst. H. Poincaré Phys. Théor., 49 (1988), 433-460.   Google Scholar

[43]

C. D. Levermore, Moment closure hierarchies for kinetic theories, J. Statist. Phys., 83 (1996), 1021-1065.  doi: 10.1007/BF02179552.  Google Scholar

[44]

P. Libermann and C.-M. Marle, Symplectic Geometry and Analytical Mechanics, Mathematics and its Applications, 35, Reidel Publishing Co., Dordrecht, 1987. doi: 10.1007/978-94-009-3807-6.  Google Scholar

[45]

J.-H. Lu and A. Weinstein, Poisson Lie groups, dressing transformations, and Bruhat decompositions, J. Differential Geom., 31 (1990), 501-526.  doi: 10.4310/jdg/1214444324.  Google Scholar

[46] S. Majid, Foundations of Quantum Group Theory, Cambridge University Press, Cambridge, 1995.  doi: 10.1017/CBO9780511613104.  Google Scholar
[47]

S. Majid, Matched pairs of Lie groups associated to solutions of the Yang-Baxter equations, Pacific J. Math., 141 (1990), 311-332.  doi: 10.2140/pjm.1990.141.311.  Google Scholar

[48]

S. Majid, Physics for algebraists: Non-commutative and non-cocommutative Hopf algebras by a bicrossproduct construction, J. Algebra, 130 (1990), 17-64.  doi: 10.1016/0021-8693(90)90099-A.  Google Scholar

[49]

C.-M. Marle, The Schouten-Nijenhuis bracket and interior products, J. Geom. Phys., 23 (1997), 350-359.  doi: 10.1016/S0393-0440(97)80009-5.  Google Scholar

[50]

J. Marsden and A. Weinstein, Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids, Phys. D, 7 (1983), 305-323.  doi: 10.1016/0167-2789(83)90134-3.  Google Scholar

[51]

J. E. Marsden, P. J. Morrison and A. Weinstein, The Hamiltonian structure of the BBGKY hierarchy equations, in Fluids and Plasmas: Geometry and Dynamics, Contemp. Math., 28, Amer. Math. Soc., Providence, RI, 1984,115-124. doi: 10.1090/conm/028/751977.  Google Scholar

[52]

J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry. A Basic Exposition of Classical Mechanical Systems, Texts in Applied Mathematics, 17, Springer-Verlag, New York, 1999. doi: 10.1007/978-0-387-21792-5.  Google Scholar

[53]

J. E. Marsden, T. Ratiu and A. Weinstein, Reduction and Hamiltonian structures on duals of semidirect product Lie algebras, in Fluids and Plasmas: Geometry and Dynamics, Contemp. Math., 28, Amer. Math. Soc., Providence, RI, 1984, 55-100. doi: 10.1090/conm/028/751975.  Google Scholar

[54]

J. E. MarsdenT. S. Raţiu and A. Weinstein, Semidirect products and reduction in mechanics, Trans. Amer. Math. Soc., 281 (1984), 147-177.  doi: 10.1090/S0002-9947-1984-0719663-1.  Google Scholar

[55]

J. E. Marsden and A. Weinstein, The Hamiltonian structure of the Maxwell-Vlasov equations, Phys. D, 4 (1981/82), 394-406.  doi: 10.1016/0167-2789(82)90043-4.  Google Scholar

[56]

J. E. MarsdenA. WeinsteinT. RatiuR. Schmid and R. G. Spencer, Hamiltonian systems with symmetry, coadjoint orbits and plasma physics, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur., 117 (1983), 289-340.   Google Scholar

[57]

I. Moerdijk and G. E. Reyes, Models for Smooth Infinitesimal Analysis, Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4757-4143-8.  Google Scholar

[58]

P. J. Morrison, Hamiltonian Field Description of the One-Dimensional Poisson-Vlasov Equations, Tech. report, Princeton Univ., NJ (USA), Plasma Physics Lab., 1981. doi: 10.2172/6423520.  Google Scholar

[59]

P. J. Morrison, Poisson brackets for fluids and plasmas, AIP Conference Proceedings, 88, American Institute of Physics, 1982, 13-46. doi: 10.1063/1.33633.  Google Scholar

[60]

H. Moscovici and B. Rangipour, Hopf algebras of primitive Lie pseudogroups and Hopf cyclic cohomology, Adv. Math., 220 (2009), 706-790.  doi: 10.1016/j.aim.2008.09.017.  Google Scholar

[61]

L. K. Norris, Generalized symplectic geometry on the frame bundle of a manifold, in Differential Geometry: Geometry in Mathematical Physics and Related Topics, Proc. Sympos. Pure Math., 54, Part 2, Amer. Math. Soc., Providence, RI, 1993,435-465.  Google Scholar

[62]

P. J. Olver, Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics, 107, Springer-Verlag, New York, 1993.  Google Scholar

[63]

M. PavelkaV. KlikaO. Esen and M. Grmela, A hierarchy of Poisson brackets in non-equilibrium thermodynamics, Phys. D, 335 (2016), 54-69.  doi: 10.1016/j.physd.2016.06.011.  Google Scholar

[64]

J. Perchik, Cohomology of Hamiltonian and Related Formal Vector Field Lie Algebras, Ph.D thesis, Harvard University in Cambridge, 1975.  Google Scholar

[65]

J. Perchik, Cohomology of Hamiltonian and related formal vector field Lie algebras, Topology, 15 (1976), 395-404.  doi: 10.1016/0040-9383(76)90033-1.  Google Scholar

[66]

M. Perin, C. Chandre, P. J. Morrison and E. Tassi, Hamiltonian closures for fluid models with four moments by dimensional analysis, J. Phys. A, 48 (2015), 24pp. doi: 10.1088/1751-8113/48/27/275501.  Google Scholar

[67]

B. Perthame, Higher moments for kinetic equations: The Vlasov-Poisson and Fokker-Planck cases, Math. Methods Appl. Sci., 13 (1990), 441-452.  doi: 10.1002/mma.1670130508.  Google Scholar

[68]

D. J. Saunders, The Geometry of Jet Bundles, London Mathematical Society Lecture Note Series, 142, Cambridge University Press, Cambridge, 1989. doi: 10.1017/CBO9780511526411.  Google Scholar

[69]

J. A. Schouten, Ueber Differentialkomitanten zweier kontravarianter Grössen, Nederl. Akad. Wetensch. Proc., 43 (1940), 449-452.   Google Scholar

[70]

S. Sternberg, Infinite Lie groups and the formal aspects of dynamical systems, J. Math. Mech., 10 (1961), 451-474.   Google Scholar

[71]

M. Takeuchi, Matched pairs of groups and bismash products of Hopf algebras, Comm. Algebra, 9 (1981), 841-882.  doi: 10.1080/00927878108822621.  Google Scholar

[72]

C. Tronci, Geometric Dynamics of Vlasov Kinetic Theory and Its Moments, Ph.D thesis, Imperial College in London, 2008. Google Scholar

[73]

W. M. Tulczyjew, The Legendre transformation, Ann. Inst. H. Poincaré Sect. A (N.S.), 27 (1977), 101-114.   Google Scholar

[74]

P. VágnerM. Pavelka and O. Esen, Multiscale thermodynamics of charged mixtures, Contin. Mech. Thermodyn., 33 (2021), 237-268.  doi: 10.1007/s00161-020-00900-5.  Google Scholar

[75]

V. Vedenyapin, A. Sinitsyn and E. Dulov, Kinetic Boltzmann, Vlasov and Related Equations, Elsevier, Inc., Amsterdam, 2011.  Google Scholar

[76]

K. Yamaguti, On the Lie triple system and its generalization, J. Sci. Hiroshima Univ. Ser. A, 21 (1957/58), 155-160.  doi: 10.32917/hmj/1555639527.  Google Scholar

[77]

K. Yano and E. M. Patterson, Vertical and complete lifts from a manifold to its cotangent bundle, J. Math. Soc. Japan, 19 (1967), 91-113.  doi: 10.2969/jmsj/01910091.  Google Scholar

[78]

T. Zhang, Double cross biproduct and bi-cycle bicrossproduct Lie bialgebras, J. Gen. Lie Theory Appl., 4 (2010), 16pp. doi: 10.4303/jglta/S090602.  Google Scholar

[1]

M. P. de Oliveira. On 3-graded Lie algebras, Jordan pairs and the canonical kernel function. Electronic Research Announcements, 2003, 9: 142-151.

[2]

Andrew N. W. Hone, Matteo Petrera. Three-dimensional discrete systems of Hirota-Kimura type and deformed Lie-Poisson algebras. Journal of Geometric Mechanics, 2009, 1 (1) : 55-85. doi: 10.3934/jgm.2009.1.55

[3]

Robert L. Griess Jr., Ching Hung Lam. Groups of Lie type, vertex algebras, and modular moonshine. Electronic Research Announcements, 2014, 21: 167-176. doi: 10.3934/era.2014.21.167

[4]

Meera G. Mainkar, Cynthia E. Will. Examples of Anosov Lie algebras. Discrete & Continuous Dynamical Systems, 2007, 18 (1) : 39-52. doi: 10.3934/dcds.2007.18.39

[5]

Hongliang Chang, Yin Chen, Runxuan Zhang. A generalization on derivations of Lie algebras. Electronic Research Archive, 2021, 29 (3) : 2457-2473. doi: 10.3934/era.2020124

[6]

Javier Pérez Álvarez. Invariant structures on Lie groups. Journal of Geometric Mechanics, 2020, 12 (2) : 141-148. doi: 10.3934/jgm.2020007

[7]

André Caldas, Mauro Patrão. Entropy of endomorphisms of Lie groups. Discrete & Continuous Dynamical Systems, 2013, 33 (4) : 1351-1363. doi: 10.3934/dcds.2013.33.1351

[8]

Gerard Thompson. Invariant metrics on Lie groups. Journal of Geometric Mechanics, 2015, 7 (4) : 517-526. doi: 10.3934/jgm.2015.7.517

[9]

Tracy L. Payne. Anosov automorphisms of nilpotent Lie algebras. Journal of Modern Dynamics, 2009, 3 (1) : 121-158. doi: 10.3934/jmd.2009.3.121

[10]

Özlem Orhan, Teoman Özer. New conservation forms and Lie algebras of Ermakov-Pinney equation. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 735-746. doi: 10.3934/dcdss.2018046

[11]

Johannes Huebschmann. On the history of Lie brackets, crossed modules, and Lie-Rinehart algebras. Journal of Geometric Mechanics, 2021, 13 (3) : 385-402. doi: 10.3934/jgm.2021009

[12]

Benjamin Couéraud, François Gay-Balmaz. Variational discretization of thermodynamical simple systems on Lie groups. Discrete & Continuous Dynamical Systems - S, 2020, 13 (4) : 1075-1102. doi: 10.3934/dcdss.2020064

[13]

Velimir Jurdjevic. Affine-quadratic problems on Lie groups. Mathematical Control & Related Fields, 2013, 3 (3) : 347-374. doi: 10.3934/mcrf.2013.3.347

[14]

Elena Celledoni, Markus Eslitzbichler, Alexander Schmeding. Shape analysis on Lie groups with applications in computer animation. Journal of Geometric Mechanics, 2016, 8 (3) : 273-304. doi: 10.3934/jgm.2016008

[15]

M. F. Newman and Michael Vaughan-Lee. Some Lie rings associated with Burnside groups. Electronic Research Announcements, 1998, 4: 1-3.

[16]

Firas Hindeleh, Gerard Thompson. Killing's equations for invariant metrics on Lie groups. Journal of Geometric Mechanics, 2011, 3 (3) : 323-335. doi: 10.3934/jgm.2011.3.323

[17]

Gregory S. Chirikjian. Information-theoretic inequalities on unimodular Lie groups. Journal of Geometric Mechanics, 2010, 2 (2) : 119-158. doi: 10.3934/jgm.2010.2.119

[18]

Nikolaos Karaliolios. Differentiable Rigidity for quasiperiodic cocycles in compact Lie groups. Journal of Modern Dynamics, 2017, 11: 125-142. doi: 10.3934/jmd.2017006

[19]

Adriano Da Silva, Alexandre J. Santana, Simão N. Stelmastchuk. Topological conjugacy of linear systems on Lie groups. Discrete & Continuous Dynamical Systems, 2017, 37 (6) : 3411-3421. doi: 10.3934/dcds.2017144

[20]

Paul Skerritt, Cornelia Vizman. Dual pairs for matrix groups. Journal of Geometric Mechanics, 2019, 11 (2) : 255-275. doi: 10.3934/jgm.2019014

2020 Impact Factor: 0.857

Metrics

  • PDF downloads (125)
  • HTML views (213)
  • Cited by (0)

Other articles
by authors

[Back to Top]