doi: 10.3934/jgm.2021014
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Brackets by any other name

109 Holly Dr, Lansdale PA 19446, USA

In Memory of Kirill Mackenzie (1951-2020)

Received  March 2021 Early access July 2021

Brackets by another name - Whitehead or Samelson products - have a history parallel to that in Kosmann-Schwarzbach's "From Schouten to Mackenzie: notes on brackets". Here I sketch the development of these and some of the other brackets and products and braces within homotopy theory and homological algebra and with applications to mathematical physics.

In contrast to the brackets of Schouten, Nijenhuis and of Gerstenhaber, which involve a relation to another graded product, in homotopy theory many of the brackets are free standing binary operations. My path takes me through many twists and turns; unless particularized, bracket will be the generic term including product and brace. The path leads beyond binary to multi-linear $ n $-ary operations, either for a single $ n $ or for whole coherent congeries of such assembled into what is known now as an $ \infty $-algebra, such as in homotopy Gerstenhaber algebras. It also leads to more subtle invariants. Along the way, attention will be called to interaction with 'physics'; indeed, it has been a two-way street.

Citation: Jim Stasheff. Brackets by any other name. Journal of Geometric Mechanics, doi: 10.3934/jgm.2021014
References:
[1]

S. A. Abramyan and T. E. Panov, Higher Whitehead products for moment-angle complexes and substitutions of simplicial complexes, Tr. Mat. Inst. Steklova, 305 (2019), 7-28.  doi: 10.4213/tm3995.  Google Scholar

[2]

F. Akman, On some generalizations of Batalin-Vilkovisky algebras, J. Pure Appl. Algebra, 120 (1997), 105-141.  doi: 10.1016/S0022-4049(96)00036-9.  Google Scholar

[3]

F. Akman, Multibraces on the Hochschild space, J. Pure Appl. Algebra, 167 (2002), 129-163.  doi: 10.1016/S0022-4049(01)00026-3.  Google Scholar

[4]

M. L. Albeggiani, Generalizzione di due teoremi, Rendiconti Del Circol0 Matematic0Di Palermo, Translation: Generalization of two Theorems. Google Scholar

[5] A. AyupovB. Omirov and I. Rakhimov, Leibniz Algebras. Structure and Classification, CRC Press, 2019.   Google Scholar
[6]

H.-J. BauesD. Blanc and S. Gondhali, Higher Toda brackets and Massey products, J. Homotopy Relat. Struct., 11 (2016), 643-677.  doi: 10.1007/s40062-016-0157-8.  Google Scholar

[7]

F. Bayen and M. Flato, Remarks concerning Nambu's generalized mechanics, Phys. Rev. D (3), 11 (1975), 3049-3053.  doi: 10.1103/PhysRevD.11.3049.  Google Scholar

[8]

F. BayenM. FlatoC. FronsdalA. Lichnerowicz and D. Sternheimer, Deformation theory and quantization. Ⅰ. Deformations of symplectic structures, Ann. Physics, 111 (1978), 61-110.  doi: 10.1016/0003-4916(78)90224-5.  Google Scholar

[9]

F. BayenM. FlatoC. FronsdalA. Lichnerowicz and D. Sternheimer, Deformation theory and quantization. Ⅱ. Physical applications, Ann. Physics, 111 (1978), 111-151.  doi: 10.1016/0003-4916(78)90225-7.  Google Scholar

[10]

F. BerendsG. Burgers and H. van Dam, On the theoretical problems in constructing intereactions involving higher spin massless particles, Nucl.Phys.B, 260 (1985), 295-322.  doi: 10.1016/0550-3213(85)90074-4.  Google Scholar

[11]

A. Bloh, On a generalization of the concept of Lie algebra, Dokl. Akad. Nauk SSSR, 165 (1965), 471-473.   Google Scholar

[12]

R. Bonezzi and O. Hohm, Leibniz gauge theories and infinity structures, Comm. Math. Phys., 377 (2020), 2027-2077.  doi: 10.1007/s00220-020-03785-2.  Google Scholar

[13]

J. A. de Azcárraga and J. M. Izquierdo, $n$-ary algebras: A review with applications, J. Phys. A, 43. Google Scholar

[14]

J. A. de Azcárraga and J. C. Pérez Bueno, Higher-order simple Lie algebras, Comm. Math. Phys., 184 (1997), 669-681.  doi: 10.1007/s002200050079.  Google Scholar

[15]

P. Deligne, Letter from Deligne to Stasheff, Gerstenhaber, May, Schechtman and Drinfeld, May. Google Scholar

[16]

I. Y. Dorfman, Dirac structures of integrable evolution equations, Phys. Lett. A, 125 (1987), 240-246.  doi: 10.1016/0375-9601(87)90201-5.  Google Scholar

[17]

A. Douady, Obstruction primaire á la déformation, Séminarie Henri Cartan, Exposé 4. Google Scholar

[18]

F. J. Dyson, Missed opportunities, Bull. Amer. Math. Soc., 78 (1972), 635-652.  doi: 10.1090/S0002-9904-1972-12971-9.  Google Scholar

[19]

V. T. Filippov, $n$-ary lie algebras, Sibirskii Math. J., 26 (1985), 126-140.   Google Scholar

[20]

T. Friedmann, P. Hanlon, R. P. Stanley and M. L. Wachs, Action of the symmetric group on the free LAnKe: A CataLAnKe theorem, Sém. Lothar. Combin., 80B (2018), Art. 63, 12pp.  Google Scholar

[21]

R. Fulp, T. Lada and J. Stasheff, Sh-Lie algebras induced by gauge transformations,, Comm. Math. Phys., 231 (2002), 25–43, arXiv: math.QA/0012106. doi: 10.1007/s00220-002-0678-3.  Google Scholar

[22]

C. Gauss, Zur mathematischen theorie der electrodynamischen wirkungen, in Werke, 1877,601–630. doi: 10.1007/978-3-642-49319-5_42.  Google Scholar

[23]

M. Gerstenhaber, The cohomology structure of an associative ring, Ann. Math., 78 (1963), 267-288.  doi: 10.2307/1970343.  Google Scholar

[24]

M. Gerstenhaber and A. A. Voronov, Homotopy $G$-algebras and moduli space operad,, Internat. Math. Res. Notices, 1995 (1995), 141–153 (electronic). doi: 10.1155/S1073792895000110.  Google Scholar

[25]

E. Getzler, Cartan homotopy formulas and the Gauss-Manin connection in cyclic homology, in Quantum Deformations of Algebras and Their Representations (Ramat-Gan, 1991/1992; Rehovot, 1991/1992), vol. 7 of Israel Math. Conf. Proc., Bar-Ilan Univ., Ramat Gan, 1993, 65–78.  Google Scholar

[26]

V. Gnedbaye, Operads of $k$-ary algebras, in Operads: Proceedings of Renaissance Conferences (eds. J.-L. Loday, J. Stasheff and A. A. Voronov), vol. 202 of Contemporary Mathematics, Amer. Math. Soc., 1997, 83–113. doi: 10.1090/conm/202/02596.  Google Scholar

[27]

A. Gracia-SazM. Jotz LeanK. C. H. Mackenzie and R. A. Mehta, Double Lie algebroids and representations up to homotopy, J. Homotopy Relat. Struct., 13 (2018), 287-319.  doi: 10.1007/s40062-017-0183-1.  Google Scholar

[28]

P. Hanlon and M. L. Wachs, On Lie $k$-algebras, Adv. in Math., 113 (1995), 206-236.  doi: 10.1006/aima.1995.1038.  Google Scholar

[29]

K. A. Hardie, Higher Whitehead products, Quart. J. Math. Oxford Ser. (2), 12 (1961), 241-249.  doi: 10.1093/qmath/12.1.241.  Google Scholar

[30]

K. Haring, On the Events Leading to the Formulation of the Gerstenhaber Algebra: 1945-1966, Master's thesis, UNC-CH, 1995. Google Scholar

[31]

P. J. Hilton and J. H. C. Whitehead, Note on the Whitehead product, Ann. of Math. (2), 58 (1953), 429-442.  doi: 10.2307/1969746.  Google Scholar

[32]

O. Hohm and B. Zwiebach, $L_{\infty}$ algebras and field theory, Fortsch. Phys., 65 (2017), 1700014..R. 163 doi: 10.1002/prop.201700014.  Google Scholar

[33]

J. Huebschmann,, On the history of Lie brackets, crossed modules, and Lie-Rinehart algebras, 2021 Google Scholar

[34]

T. Kadeishvili, On the homology theory of fibre spaces, Uspekhi Mat. Nauk, 35 (1980), 183–188, arXiv: math.AT/0504437.  Google Scholar

[35]

Y. Kosmann-Schwarzbach, From Schouten to Mackenzie: Notes on brackets, 2021. Google Scholar

[36]

Y. Kosmann-Schwarzbach, From Poisson algebras to Gerstenhaber algebras, Ann. Inst. Fourier (Grenoble), 46 (1996), 1243-1274.  doi: 10.5802/aif.1547.  Google Scholar

[37]

Y. Kosmann-Schwarzbach, Derived brackets, Lett. Math. Phys., 69 (2004), 61-87.  doi: 10.1007/s11005-004-0608-8.  Google Scholar

[38]

Y. Kosmann-Schwarzbach, The Noether Theorems, Sources and Studies in the History of Mathematics and Physical Sciences, Springer, New York, 2011, Invariance and conservation laws in the twentieth century, Translated, revised and augmented from the 2006 French edition by Bertram E. Schwarzbach. doi: 10.1007/978-0-387-87868-3.  Google Scholar

[39]

A. Kotov and T. Strobl, The embedding tensor, Leibniz-Loday algebras, and their higher gauge theories, Comm. Math. Phys., 376 (2020), 235-258.  doi: 10.1007/s00220-019-03569-3.  Google Scholar

[40]

T. Lada and M. Markl, Strongly homotopy Lie algebras,, Comm. in Algebra, 23 (1995), 2147–2161, arXiv: hep-th/9406095. doi: 10.1080/00927879508825335.  Google Scholar

[41]

T. Lada and M. Markl, Symmetric brace algebras, Appl. Categ. Structures, 13 (2005), 351-370.  doi: 10.1007/s10485-005-0911-2.  Google Scholar

[42]

T. Lada and J. Stasheff, Introduction to sh Lie algebras for physicists, Intern'l J. Theor. Phys., 32 (1993), 1087-1103.  doi: 10.1007/BF00671791.  Google Scholar

[43]

S. Lavau and Stasheff.J, From differential crossed modules to tensor hierarchies, arXiv: 2003.07838. Google Scholar

[44]

S. Lavau, Tensor hierarchies and Leibniz algebras, J. Geom. Phys., 144 (2019), 147-189.  doi: 10.1016/j.geomphys.2019.05.014.  Google Scholar

[45]

B. H. Lian and G. J. Zuckerman, New perspectives on the BRST-algebraic structure of string theory,, Commun. Math. Phys., 154 (1993), 613–646, arXiv: Hep-th/9211072. doi: 10.1007/BF02102111.  Google Scholar

[46]

Z.-J. LiuA. Weinstein and P. Xu, Manin triples for Lie bialgebroids, J. Diff. Geom., 45 (1997), 547-574.   Google Scholar

[47]

J.-L. Loday, Une version non commutative des algebres de Lie: Les algebres de Leibniz, Enseign. Math. (2), 39 (1993), 269-293.   Google Scholar

[48]

K. C. H. Mackenzie, General Theory of Lie Groupoids and Lie Algebroids, vol. 213 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, 2005. doi: 10.1017/CBO9781107325883.  Google Scholar

[49]

W. S. Massey, Some higher order cohomology operations, in International Conference on Algebraic Topology, 1958,145–154.  Google Scholar

[50]

J. P. May, The Geometry of Iterated Loop Spaces, vol. 271 of Lecture Notes in Math., Springer-Verlag, 1972.  Google Scholar

[51]

J. E. McClure and J. H. Smith, A solution of Deligne's Hochschild cohomology conjecture,, in Recent Progress in Homotopy Theory (Baltimore, MD, 2000), vol. 293 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2002,153–193. doi: 10.1090/conm/293/04948.  Google Scholar

[52]

Y. Nambu, Generalized Hamiltonian dynamics, Phys. Rev. D (3), 7 (1973), 2405-2412.  doi: 10.1103/PhysRevD.7.2405.  Google Scholar

[53]

A. Nijenhuis, Jacobi-type identities for bilinear differential concomitants of certain tensor fields, Indag. Math., 17 (1955), 390–397,398–403.  Google Scholar

[54]

E. Noether, Invariante variationsprobleme, Transport Theory and Stat. Phys., 1 (1971), 186-207.  doi: 10.1080/00411457108231446.  Google Scholar

[55]

M. Penkava and A. Schwarz, On some algebraic structures arising in string theory, in Perspectives on Mathematics and Physics (eds. R. Penner and S. Yau), Conf. Proc. Lecture Notes Math. Phys., Ⅲ, International Press, 1994,219–227, arXiv: hep-th/9212072.  Google Scholar

[56]

G. J. Porter, Higher-order Whitehead products, Topology, 3 (1965), 123-135.  doi: 10.1016/0040-9383(65)90039-X.  Google Scholar

[57]

G. Y. Rainich, Electrodynamics in the general relativity theory, Transactions of the American Mathematical Society, 27 (1925), 106-136.  doi: 10.1090/S0002-9947-1925-1501302-6.  Google Scholar

[58]

G. Y. Rainich, Conditional invariants, Proc. Nat. Acad. Sci. U. S. A., 27 (1941), 352-355.  doi: 10.1073/pnas.27.7.352.  Google Scholar

[59]

G. Y. Rainich, Mathematics of Relativity, John Wiley & Sons Inc., New York, N. Y., 1950.  Google Scholar

[60]

V. Retakh, Lie-Massey brackets and $n$-homotopically multiplicative maps of differential graded Lie algebras, J. Pure Appl. Algebra, 89 (1993), 217-229.  doi: 10.1016/0022-4049(93)90095-B.  Google Scholar

[61]

D. Roytenberg, Courant Algebroids, Derived Brackets and even Symplectic Supermanifolds, ProQuest LLC, Ann Arbor, MI, 1999, Thesis (Ph.D.)–University of California, Berkeley.  Google Scholar

[62]

D. Sahoo and M. C. Valsakumar, Nambu mechanics and its quantization, Phys Rev A, 46 (1992), 4410-4412.  doi: 10.1103/PhysRevA.46.4410.  Google Scholar

[63]

H. Samelson, A connection between the Whitehead and the Pontryagin product, Amer. J. Math., 75 (1953), 744-752.  doi: 10.2307/2372549.  Google Scholar

[64]

M. Schlessinger and J. Stasheff, Deformation theory and rational homotopy type, 2012, Preprint, arXiv: 1211.1647. Google Scholar

[65]

P. Ševera and A. Weinstein, Poisson geometry with a 3-form background. Noncommutative geometry and string theory (Yokohama, 2001), Progr. Theoret. Phys. Suppl., 144 (2001), 145–154., arXiv: math.SG/0107133. doi: 10.1143/PTPS.144.145.  Google Scholar

[66]

J. Stasheff, Homotopy associativity of H-spaces, Ⅰ, Trans. Amer. Math. Soc., 108 (1963), 275-292.  doi: 10.1090/s0002-9947-1963-0158400-5.  Google Scholar

[67]

J. Stasheff, Homotopy associativity of H-spaces, Ⅱ, Trans. Amer. Math. Soc., 108 (1963), 293-312.  doi: 10.1090/s0002-9947-1963-0158400-5.  Google Scholar

[68]

J. D. Stasheff, The intrinsic bracket on the deformation complex of an associative algebra, JPAA, 88 (1993), 231-235.  doi: 10.1016/0022-4049(93)90096-C.  Google Scholar

[69]

L. Takhtajan, A higher order analog of the Chevalley-Eilenberg complex and the deformation theory of $n$-algebras, St. Petersburg MJ, 6 (1994), 429-438.   Google Scholar

[70]

L. Takhtajan, On foundation of the generalized Nambu mechanics, CMP, 160 (1994), 295-315.  doi: 10.1007/BF02103278.  Google Scholar

[71]

D. E. Tamarkin, Operadic Proof of M. Kontsevich's Formality Theorem, ProQuest LLC, Ann Arbor, MI, 1999, Thesis (Ph.D.)–The Pennsylvania State University.  Google Scholar

[72]

H. Toda, Composition Methods in Homotopy Groups of Spheres, Annals of Mathematics Studies, No. 49, Princeton University Press, Princeton, N.J., 1962.  Google Scholar

[73]

A. Vinogradov and M. Vinogradov, On multiple generalizations of Lie algebras and Poisson manifolds, in Secondary Calculus and Cohomological Physics (Moscow, 1997), Amer. Math. Soc., Providence, RI, 1998,273–287. doi: 10.1090/conm/219/03080.  Google Scholar

[74]

A. A. Voronov, Homotopy Gerstenhaber algebras, in Conférence Moshé Flato 1999, Vol. Ⅱ (Dijon), vol. 22 of Math. Phys. Stud., Kluwer Acad. Publ., Dordrecht, 2000,307–331.  Google Scholar

[75]

A. Wade, Nambu-Dirac structures for Lie algebroids, Lett. Math. Phys., 61 (2002), 85-99.  doi: 10.1023/A:1020735529188.  Google Scholar

[76]

J. H. C. Whitehead, On adding relations to homotopy groups, Ann. of Math. (2), 42 (1941), 409-428.  doi: 10.2307/1968907.  Google Scholar

[77]

B. Zwiebach, Closed string field theory: Quantum action and the Batalin-Vilkovisky master equation, Nucl. Phys. B, 390 (1993), 33-152.  doi: 10.1016/0550-3213(93)90388-6.  Google Scholar

[78] B. Zwiebach, A First Course in String Theory, 2nd edition, Cambridge University Press, Cambridge, 2009.  doi: 10.1017/CBO9780511841620.  Google Scholar

show all references

References:
[1]

S. A. Abramyan and T. E. Panov, Higher Whitehead products for moment-angle complexes and substitutions of simplicial complexes, Tr. Mat. Inst. Steklova, 305 (2019), 7-28.  doi: 10.4213/tm3995.  Google Scholar

[2]

F. Akman, On some generalizations of Batalin-Vilkovisky algebras, J. Pure Appl. Algebra, 120 (1997), 105-141.  doi: 10.1016/S0022-4049(96)00036-9.  Google Scholar

[3]

F. Akman, Multibraces on the Hochschild space, J. Pure Appl. Algebra, 167 (2002), 129-163.  doi: 10.1016/S0022-4049(01)00026-3.  Google Scholar

[4]

M. L. Albeggiani, Generalizzione di due teoremi, Rendiconti Del Circol0 Matematic0Di Palermo, Translation: Generalization of two Theorems. Google Scholar

[5] A. AyupovB. Omirov and I. Rakhimov, Leibniz Algebras. Structure and Classification, CRC Press, 2019.   Google Scholar
[6]

H.-J. BauesD. Blanc and S. Gondhali, Higher Toda brackets and Massey products, J. Homotopy Relat. Struct., 11 (2016), 643-677.  doi: 10.1007/s40062-016-0157-8.  Google Scholar

[7]

F. Bayen and M. Flato, Remarks concerning Nambu's generalized mechanics, Phys. Rev. D (3), 11 (1975), 3049-3053.  doi: 10.1103/PhysRevD.11.3049.  Google Scholar

[8]

F. BayenM. FlatoC. FronsdalA. Lichnerowicz and D. Sternheimer, Deformation theory and quantization. Ⅰ. Deformations of symplectic structures, Ann. Physics, 111 (1978), 61-110.  doi: 10.1016/0003-4916(78)90224-5.  Google Scholar

[9]

F. BayenM. FlatoC. FronsdalA. Lichnerowicz and D. Sternheimer, Deformation theory and quantization. Ⅱ. Physical applications, Ann. Physics, 111 (1978), 111-151.  doi: 10.1016/0003-4916(78)90225-7.  Google Scholar

[10]

F. BerendsG. Burgers and H. van Dam, On the theoretical problems in constructing intereactions involving higher spin massless particles, Nucl.Phys.B, 260 (1985), 295-322.  doi: 10.1016/0550-3213(85)90074-4.  Google Scholar

[11]

A. Bloh, On a generalization of the concept of Lie algebra, Dokl. Akad. Nauk SSSR, 165 (1965), 471-473.   Google Scholar

[12]

R. Bonezzi and O. Hohm, Leibniz gauge theories and infinity structures, Comm. Math. Phys., 377 (2020), 2027-2077.  doi: 10.1007/s00220-020-03785-2.  Google Scholar

[13]

J. A. de Azcárraga and J. M. Izquierdo, $n$-ary algebras: A review with applications, J. Phys. A, 43. Google Scholar

[14]

J. A. de Azcárraga and J. C. Pérez Bueno, Higher-order simple Lie algebras, Comm. Math. Phys., 184 (1997), 669-681.  doi: 10.1007/s002200050079.  Google Scholar

[15]

P. Deligne, Letter from Deligne to Stasheff, Gerstenhaber, May, Schechtman and Drinfeld, May. Google Scholar

[16]

I. Y. Dorfman, Dirac structures of integrable evolution equations, Phys. Lett. A, 125 (1987), 240-246.  doi: 10.1016/0375-9601(87)90201-5.  Google Scholar

[17]

A. Douady, Obstruction primaire á la déformation, Séminarie Henri Cartan, Exposé 4. Google Scholar

[18]

F. J. Dyson, Missed opportunities, Bull. Amer. Math. Soc., 78 (1972), 635-652.  doi: 10.1090/S0002-9904-1972-12971-9.  Google Scholar

[19]

V. T. Filippov, $n$-ary lie algebras, Sibirskii Math. J., 26 (1985), 126-140.   Google Scholar

[20]

T. Friedmann, P. Hanlon, R. P. Stanley and M. L. Wachs, Action of the symmetric group on the free LAnKe: A CataLAnKe theorem, Sém. Lothar. Combin., 80B (2018), Art. 63, 12pp.  Google Scholar

[21]

R. Fulp, T. Lada and J. Stasheff, Sh-Lie algebras induced by gauge transformations,, Comm. Math. Phys., 231 (2002), 25–43, arXiv: math.QA/0012106. doi: 10.1007/s00220-002-0678-3.  Google Scholar

[22]

C. Gauss, Zur mathematischen theorie der electrodynamischen wirkungen, in Werke, 1877,601–630. doi: 10.1007/978-3-642-49319-5_42.  Google Scholar

[23]

M. Gerstenhaber, The cohomology structure of an associative ring, Ann. Math., 78 (1963), 267-288.  doi: 10.2307/1970343.  Google Scholar

[24]

M. Gerstenhaber and A. A. Voronov, Homotopy $G$-algebras and moduli space operad,, Internat. Math. Res. Notices, 1995 (1995), 141–153 (electronic). doi: 10.1155/S1073792895000110.  Google Scholar

[25]

E. Getzler, Cartan homotopy formulas and the Gauss-Manin connection in cyclic homology, in Quantum Deformations of Algebras and Their Representations (Ramat-Gan, 1991/1992; Rehovot, 1991/1992), vol. 7 of Israel Math. Conf. Proc., Bar-Ilan Univ., Ramat Gan, 1993, 65–78.  Google Scholar

[26]

V. Gnedbaye, Operads of $k$-ary algebras, in Operads: Proceedings of Renaissance Conferences (eds. J.-L. Loday, J. Stasheff and A. A. Voronov), vol. 202 of Contemporary Mathematics, Amer. Math. Soc., 1997, 83–113. doi: 10.1090/conm/202/02596.  Google Scholar

[27]

A. Gracia-SazM. Jotz LeanK. C. H. Mackenzie and R. A. Mehta, Double Lie algebroids and representations up to homotopy, J. Homotopy Relat. Struct., 13 (2018), 287-319.  doi: 10.1007/s40062-017-0183-1.  Google Scholar

[28]

P. Hanlon and M. L. Wachs, On Lie $k$-algebras, Adv. in Math., 113 (1995), 206-236.  doi: 10.1006/aima.1995.1038.  Google Scholar

[29]

K. A. Hardie, Higher Whitehead products, Quart. J. Math. Oxford Ser. (2), 12 (1961), 241-249.  doi: 10.1093/qmath/12.1.241.  Google Scholar

[30]

K. Haring, On the Events Leading to the Formulation of the Gerstenhaber Algebra: 1945-1966, Master's thesis, UNC-CH, 1995. Google Scholar

[31]

P. J. Hilton and J. H. C. Whitehead, Note on the Whitehead product, Ann. of Math. (2), 58 (1953), 429-442.  doi: 10.2307/1969746.  Google Scholar

[32]

O. Hohm and B. Zwiebach, $L_{\infty}$ algebras and field theory, Fortsch. Phys., 65 (2017), 1700014..R. 163 doi: 10.1002/prop.201700014.  Google Scholar

[33]

J. Huebschmann,, On the history of Lie brackets, crossed modules, and Lie-Rinehart algebras, 2021 Google Scholar

[34]

T. Kadeishvili, On the homology theory of fibre spaces, Uspekhi Mat. Nauk, 35 (1980), 183–188, arXiv: math.AT/0504437.  Google Scholar

[35]

Y. Kosmann-Schwarzbach, From Schouten to Mackenzie: Notes on brackets, 2021. Google Scholar

[36]

Y. Kosmann-Schwarzbach, From Poisson algebras to Gerstenhaber algebras, Ann. Inst. Fourier (Grenoble), 46 (1996), 1243-1274.  doi: 10.5802/aif.1547.  Google Scholar

[37]

Y. Kosmann-Schwarzbach, Derived brackets, Lett. Math. Phys., 69 (2004), 61-87.  doi: 10.1007/s11005-004-0608-8.  Google Scholar

[38]

Y. Kosmann-Schwarzbach, The Noether Theorems, Sources and Studies in the History of Mathematics and Physical Sciences, Springer, New York, 2011, Invariance and conservation laws in the twentieth century, Translated, revised and augmented from the 2006 French edition by Bertram E. Schwarzbach. doi: 10.1007/978-0-387-87868-3.  Google Scholar

[39]

A. Kotov and T. Strobl, The embedding tensor, Leibniz-Loday algebras, and their higher gauge theories, Comm. Math. Phys., 376 (2020), 235-258.  doi: 10.1007/s00220-019-03569-3.  Google Scholar

[40]

T. Lada and M. Markl, Strongly homotopy Lie algebras,, Comm. in Algebra, 23 (1995), 2147–2161, arXiv: hep-th/9406095. doi: 10.1080/00927879508825335.  Google Scholar

[41]

T. Lada and M. Markl, Symmetric brace algebras, Appl. Categ. Structures, 13 (2005), 351-370.  doi: 10.1007/s10485-005-0911-2.  Google Scholar

[42]

T. Lada and J. Stasheff, Introduction to sh Lie algebras for physicists, Intern'l J. Theor. Phys., 32 (1993), 1087-1103.  doi: 10.1007/BF00671791.  Google Scholar

[43]

S. Lavau and Stasheff.J, From differential crossed modules to tensor hierarchies, arXiv: 2003.07838. Google Scholar

[44]

S. Lavau, Tensor hierarchies and Leibniz algebras, J. Geom. Phys., 144 (2019), 147-189.  doi: 10.1016/j.geomphys.2019.05.014.  Google Scholar

[45]

B. H. Lian and G. J. Zuckerman, New perspectives on the BRST-algebraic structure of string theory,, Commun. Math. Phys., 154 (1993), 613–646, arXiv: Hep-th/9211072. doi: 10.1007/BF02102111.  Google Scholar

[46]

Z.-J. LiuA. Weinstein and P. Xu, Manin triples for Lie bialgebroids, J. Diff. Geom., 45 (1997), 547-574.   Google Scholar

[47]

J.-L. Loday, Une version non commutative des algebres de Lie: Les algebres de Leibniz, Enseign. Math. (2), 39 (1993), 269-293.   Google Scholar

[48]

K. C. H. Mackenzie, General Theory of Lie Groupoids and Lie Algebroids, vol. 213 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, 2005. doi: 10.1017/CBO9781107325883.  Google Scholar

[49]

W. S. Massey, Some higher order cohomology operations, in International Conference on Algebraic Topology, 1958,145–154.  Google Scholar

[50]

J. P. May, The Geometry of Iterated Loop Spaces, vol. 271 of Lecture Notes in Math., Springer-Verlag, 1972.  Google Scholar

[51]

J. E. McClure and J. H. Smith, A solution of Deligne's Hochschild cohomology conjecture,, in Recent Progress in Homotopy Theory (Baltimore, MD, 2000), vol. 293 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2002,153–193. doi: 10.1090/conm/293/04948.  Google Scholar

[52]

Y. Nambu, Generalized Hamiltonian dynamics, Phys. Rev. D (3), 7 (1973), 2405-2412.  doi: 10.1103/PhysRevD.7.2405.  Google Scholar

[53]

A. Nijenhuis, Jacobi-type identities for bilinear differential concomitants of certain tensor fields, Indag. Math., 17 (1955), 390–397,398–403.  Google Scholar

[54]

E. Noether, Invariante variationsprobleme, Transport Theory and Stat. Phys., 1 (1971), 186-207.  doi: 10.1080/00411457108231446.  Google Scholar

[55]

M. Penkava and A. Schwarz, On some algebraic structures arising in string theory, in Perspectives on Mathematics and Physics (eds. R. Penner and S. Yau), Conf. Proc. Lecture Notes Math. Phys., Ⅲ, International Press, 1994,219–227, arXiv: hep-th/9212072.  Google Scholar

[56]

G. J. Porter, Higher-order Whitehead products, Topology, 3 (1965), 123-135.  doi: 10.1016/0040-9383(65)90039-X.  Google Scholar

[57]

G. Y. Rainich, Electrodynamics in the general relativity theory, Transactions of the American Mathematical Society, 27 (1925), 106-136.  doi: 10.1090/S0002-9947-1925-1501302-6.  Google Scholar

[58]

G. Y. Rainich, Conditional invariants, Proc. Nat. Acad. Sci. U. S. A., 27 (1941), 352-355.  doi: 10.1073/pnas.27.7.352.  Google Scholar

[59]

G. Y. Rainich, Mathematics of Relativity, John Wiley & Sons Inc., New York, N. Y., 1950.  Google Scholar

[60]

V. Retakh, Lie-Massey brackets and $n$-homotopically multiplicative maps of differential graded Lie algebras, J. Pure Appl. Algebra, 89 (1993), 217-229.  doi: 10.1016/0022-4049(93)90095-B.  Google Scholar

[61]

D. Roytenberg, Courant Algebroids, Derived Brackets and even Symplectic Supermanifolds, ProQuest LLC, Ann Arbor, MI, 1999, Thesis (Ph.D.)–University of California, Berkeley.  Google Scholar

[62]

D. Sahoo and M. C. Valsakumar, Nambu mechanics and its quantization, Phys Rev A, 46 (1992), 4410-4412.  doi: 10.1103/PhysRevA.46.4410.  Google Scholar

[63]

H. Samelson, A connection between the Whitehead and the Pontryagin product, Amer. J. Math., 75 (1953), 744-752.  doi: 10.2307/2372549.  Google Scholar

[64]

M. Schlessinger and J. Stasheff, Deformation theory and rational homotopy type, 2012, Preprint, arXiv: 1211.1647. Google Scholar

[65]

P. Ševera and A. Weinstein, Poisson geometry with a 3-form background. Noncommutative geometry and string theory (Yokohama, 2001), Progr. Theoret. Phys. Suppl., 144 (2001), 145–154., arXiv: math.SG/0107133. doi: 10.1143/PTPS.144.145.  Google Scholar

[66]

J. Stasheff, Homotopy associativity of H-spaces, Ⅰ, Trans. Amer. Math. Soc., 108 (1963), 275-292.  doi: 10.1090/s0002-9947-1963-0158400-5.  Google Scholar

[67]

J. Stasheff, Homotopy associativity of H-spaces, Ⅱ, Trans. Amer. Math. Soc., 108 (1963), 293-312.  doi: 10.1090/s0002-9947-1963-0158400-5.  Google Scholar

[68]

J. D. Stasheff, The intrinsic bracket on the deformation complex of an associative algebra, JPAA, 88 (1993), 231-235.  doi: 10.1016/0022-4049(93)90096-C.  Google Scholar

[69]

L. Takhtajan, A higher order analog of the Chevalley-Eilenberg complex and the deformation theory of $n$-algebras, St. Petersburg MJ, 6 (1994), 429-438.   Google Scholar

[70]

L. Takhtajan, On foundation of the generalized Nambu mechanics, CMP, 160 (1994), 295-315.  doi: 10.1007/BF02103278.  Google Scholar

[71]

D. E. Tamarkin, Operadic Proof of M. Kontsevich's Formality Theorem, ProQuest LLC, Ann Arbor, MI, 1999, Thesis (Ph.D.)–The Pennsylvania State University.  Google Scholar

[72]

H. Toda, Composition Methods in Homotopy Groups of Spheres, Annals of Mathematics Studies, No. 49, Princeton University Press, Princeton, N.J., 1962.  Google Scholar

[73]

A. Vinogradov and M. Vinogradov, On multiple generalizations of Lie algebras and Poisson manifolds, in Secondary Calculus and Cohomological Physics (Moscow, 1997), Amer. Math. Soc., Providence, RI, 1998,273–287. doi: 10.1090/conm/219/03080.  Google Scholar

[74]

A. A. Voronov, Homotopy Gerstenhaber algebras, in Conférence Moshé Flato 1999, Vol. Ⅱ (Dijon), vol. 22 of Math. Phys. Stud., Kluwer Acad. Publ., Dordrecht, 2000,307–331.  Google Scholar

[75]

A. Wade, Nambu-Dirac structures for Lie algebroids, Lett. Math. Phys., 61 (2002), 85-99.  doi: 10.1023/A:1020735529188.  Google Scholar

[76]

J. H. C. Whitehead, On adding relations to homotopy groups, Ann. of Math. (2), 42 (1941), 409-428.  doi: 10.2307/1968907.  Google Scholar

[77]

B. Zwiebach, Closed string field theory: Quantum action and the Batalin-Vilkovisky master equation, Nucl. Phys. B, 390 (1993), 33-152.  doi: 10.1016/0550-3213(93)90388-6.  Google Scholar

[78] B. Zwiebach, A First Course in String Theory, 2nd edition, Cambridge University Press, Cambridge, 2009.  doi: 10.1017/CBO9780511841620.  Google Scholar
[1]

Johannes Huebschmann. On the history of Lie brackets, crossed modules, and Lie-Rinehart algebras. Journal of Geometric Mechanics, 2021  doi: 10.3934/jgm.2021009

[2]

Adel Alahmadi, Hamed Alsulami, S.K. Jain, Efim Zelmanov. On matrix wreath products of algebras. Electronic Research Announcements, 2017, 24: 78-86. doi: 10.3934/era.2017.24.009

[3]

Meera G. Mainkar, Cynthia E. Will. Examples of Anosov Lie algebras. Discrete & Continuous Dynamical Systems, 2007, 18 (1) : 39-52. doi: 10.3934/dcds.2007.18.39

[4]

Hongliang Chang, Yin Chen, Runxuan Zhang. A generalization on derivations of Lie algebras. Electronic Research Archive, 2021, 29 (3) : 2457-2473. doi: 10.3934/era.2020124

[5]

Tracy L. Payne. Anosov automorphisms of nilpotent Lie algebras. Journal of Modern Dynamics, 2009, 3 (1) : 121-158. doi: 10.3934/jmd.2009.3.121

[6]

Robert L. Griess Jr., Ching Hung Lam. Groups of Lie type, vertex algebras, and modular moonshine. Electronic Research Announcements, 2014, 21: 167-176. doi: 10.3934/era.2014.21.167

[7]

M. P. de Oliveira. On 3-graded Lie algebras, Jordan pairs and the canonical kernel function. Electronic Research Announcements, 2003, 9: 142-151.

[8]

Isaac A. García, Jaume Giné, Jaume Llibre. Liénard and Riccati differential equations related via Lie Algebras. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 485-494. doi: 10.3934/dcdsb.2008.10.485

[9]

Özlem Orhan, Teoman Özer. New conservation forms and Lie algebras of Ermakov-Pinney equation. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 735-746. doi: 10.3934/dcdss.2018046

[10]

Thierry Paul, David Sauzin. Normalization in Banach scale Lie algebras via mould calculus and applications. Discrete & Continuous Dynamical Systems, 2017, 37 (8) : 4461-4487. doi: 10.3934/dcds.2017191

[11]

A. A. Kirillov. Family algebras. Electronic Research Announcements, 2000, 6: 7-20.

[12]

Andrew N. W. Hone, Matteo Petrera. Three-dimensional discrete systems of Hirota-Kimura type and deformed Lie-Poisson algebras. Journal of Geometric Mechanics, 2009, 1 (1) : 55-85. doi: 10.3934/jgm.2009.1.55

[13]

Yacine Aït Amrane, Rafik Nasri, Ahmed Zeglaoui. Warped Poisson brackets on warped products. Journal of Geometric Mechanics, 2014, 6 (3) : 279-296. doi: 10.3934/jgm.2014.6.279

[14]

Rui L. Fernandes, Yuxuan Zhang. Local and global integrability of Lie brackets. Journal of Geometric Mechanics, 2021  doi: 10.3934/jgm.2021024

[15]

Steffen Konig and Changchang Xi. Cellular algebras and quasi-hereditary algebras: a comparison. Electronic Research Announcements, 1999, 5: 71-75.

[16]

Stephen Doty and Anthony Giaquinto. Generators and relations for Schur algebras. Electronic Research Announcements, 2001, 7: 54-62.

[17]

Valentin Ovsienko, MichaeL Shapiro. Cluster algebras with Grassmann variables. Electronic Research Announcements, 2019, 26: 1-15. doi: 10.3934/era.2019.26.001

[18]

L. S. Grinblat. Theorems on sets not belonging to algebras. Electronic Research Announcements, 2004, 10: 51-57.

[19]

Jin-Yun Guo, Cong Xiao, Xiaojian Lu. On $ n $-slice algebras and related algebras. Electronic Research Archive, 2021, 29 (4) : 2687-2718. doi: 10.3934/era.2021009

[20]

Randall Dougherty and Thomas Jech. Left-distributive embedding algebras. Electronic Research Announcements, 1997, 3: 28-37.

2020 Impact Factor: 0.857

Article outline

Figures and Tables

[Back to Top]