June  2021, 13(2): 247-271. doi: 10.3934/jgm.2021015

A bundle framework for observer design on smooth manifolds with symmetry

1. 

Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076, India

2. 

Department of Mechanical Engineering, University of Peradeniya, KY20400, Sri Lanka

3. 

School of Postgraduate Studies, Sri Lanka Technological Campus, Padukka, CO 10500, Sri Lanka

4. 

Systems and Control Engineering Group, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076, India

* Corresponding author

Received  September 2019 Revised  June 2021 Published  June 2021 Early access  June 2021

Fund Project: The authors would like to thank the Indian Institute of Technology Bombay and the Sri Lanka Technological Campus, Padukka, for their support both logistical and financial.

The article presents a bundle framework for nonlinear observer design on a manifold with a a Lie group action. The group action on the manifold decomposes the manifold to a quotient structure and an orbit space, and the problem of observer design for the entire system gets decomposed to a design over the orbit (the group space) and a design over the quotient space. The emphasis throughout the article is on presenting an overarching geometric structure; the special case when the group action is free is given special emphasis. Gradient based observer design on a Lie group is given explicit attention. The concepts developed are illustrated by applying them on well known examples, which include the action of $ {\mathop{\mathbb{SO}(3)}} $ on $ \mathbb{R}^3 \setminus \{0\} $ and the simultaneous localisation and mapping (SLAM) problem.

Citation: Anant A. Joshi, D. H. S. Maithripala, Ravi N. Banavar. A bundle framework for observer design on smooth manifolds with symmetry. Journal of Geometric Mechanics, 2021, 13 (2) : 247-271. doi: 10.3934/jgm.2021015
References:
[1]

D. Auroux and S. Bonnabel, Symmetry-based observers for some water-tank problems, IEEE Transactions on Automatic Control, 56 (2011), 1046-1058.  doi: 10.1109/TAC.2010.2067291.  Google Scholar

[2]

T. Bailey and H. Durrant-Whyte, Simultaneous localization and mapping (slam): Part II, IEEE Robotics Automation Magazine, 13 (2006), 108-117.  doi: 10.1109/MRA.2006.1678144.  Google Scholar

[3]

G. Baldwin, R. Mahony and J. Trumpf, A nonlinear observer for 6 dof pose estimation from inertial and bearing measurements, in 2009 IEEE International Conference on Robotics and Automation, 2009, 2237–2242. doi: 10.1109/ROBOT.2009.5152242.  Google Scholar

[4]

G. Baldwin, R. Mahony, J. Trumpf, T. Hamel and T. Cheviron, Complementary filter design on the special euclidean group se(3), in 2007 European Control Conference (ECC), 2007, 3763–3770. doi: 10.23919/ECC.2007.7068746.  Google Scholar

[5]

A. Barrau and S. Bonnabel, Intrinsic filtering on lie groups with applications to attitude estimation, IEEE Transactions on Automatic Control, 60 (2015), 436-449.  doi: 10.1109/TAC.2014.2342911.  Google Scholar

[6]

A. Barrau and S. Bonnabel, The invariant extended kalman filter as a stable observer, IEEE Transactions on Automatic Control, 62 (2017), 1797-1812.  doi: 10.1109/TAC.2016.2594085.  Google Scholar

[7]

A. Barrau and S. Bonnabel, Three examples of the stability properties of the invariant extended kalman filter, IFAC-PapersOnLine, 50 (2017), 431 – 437, 20th IFAC World Congress. doi: 10.1016/j.ifacol.2017.08.061.  Google Scholar

[8]

A. Barrau and S. Bonnabel, Invariant kalman filtering, Annual Review of Control, Robotics, and Autonomous Systems, 1 (2018), 237-257.  doi: 10.1146/annurev-control-060117-105010.  Google Scholar

[9]

A. N. Bishop, P. N. Pathirana and A. V. Savkin, Target tracking with range and bearing measurements via robust linear filtering, in 2007 3rd International Conference on Intelligent Sensors, Sensor Networks and Information, 2007,131–135. doi: 10.1109/ISSNIP.2007.4496832.  Google Scholar

[10]

A. M. BlochDong Eui ChangN. E. Leonard and J. E. Marsden, Controlled lagrangians and the stabilization of mechanical systems. ii. potential shaping, IEEE Transactions on Automatic Control, 46 (2001), 1556-1571.  doi: 10.1109/9.956051.  Google Scholar

[11]

A. M. BlochN. E. Leonard and J. E. Marsden, Controlled lagrangians and the stabilization of mechanical systems. i. the first matching theorem, IEEE Transactions on Automatic Control, 45 (2000), 2253-2270.  doi: 10.1109/9.895562.  Google Scholar

[12]

A. M. Bloch, Nonholonomic Mechanics and Control, Springer-Verlag New York, 2015. doi: 10.1007/978-1-4939-3017-3.  Google Scholar

[13]

S. Bonnabel, Left-invariant extended kalman filter and attitude estimation, in 2007 46th IEEE Conference on Decision and Control, 2007, 1027–1032. doi: 10.1109/CDC.2007.4434662.  Google Scholar

[14]

S. BonnabelP. Martin and P. Rouchon, Symmetry-preserving observers, IEEE Transactions on Automatic Control, 53 (2008), 2514-2526.  doi: 10.1109/TAC.2008.2006929.  Google Scholar

[15]

S. BonnabelP. Martin and P. Rouchon, Non-linear symmetry-preserving observers on lie groups, IEEE Transactions on Automatic Control, 54 (2009), 1709-1713.  doi: 10.1109/TAC.2009.2020646.  Google Scholar

[16]

S. Bonnabel, P. Martin, P. Rouchon and E. Salaün, A separation principle on lie groups, IFAC Proceedings Volumes, 44 (2011), 8004 – 8009, 18th IFAC World Congress. doi: 10.3182/20110828-6-IT-1002.03353.  Google Scholar

[17]

S. Bonnable, P. Martin and E. Salaün, Invariant extended kalman filter: theory and application to a velocity-aided attitude estimation problem, in Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference, 2009, 1297–1304. doi: 10.1109/CDC.2009.5400372.  Google Scholar

[18]

G. Bourmaud, R. Mégret, A. Giremus and Y. Berthoumieu, Discrete extended kalman filter on lie groups, in 21st European Signal Processing Conference (EUSIPCO 2013), 2013, 1–5. Google Scholar

[19]

N. G. Branko Ristic Sanjeev Arulampalam, Beyond the Kalman Filter, Wiley-IEEE, 2004. Google Scholar

[20]

F. Bullo and A. D. Lewis, Geometric Control of Mechanical Systems, Springer-Verlag New York, 2005. doi: 10.1007/978-1-4899-7276-7.  Google Scholar

[21]

C. CadenaL. CarloneH. CarrilloY. LatifD. ScaramuzzaJ. NeiraI. Reid and J. J. Leonard, Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age, IEEE Transactions on Robotics, 32 (2016), 1309-1332.  doi: 10.1109/TRO.2016.2624754.  Google Scholar

[22]

P. Coote, J. Trumpf, R. Mahony and J. C. Willems, Near-optimal deterministic filtering on the unit circle, in Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference, 2009, 5490–5495. doi: 10.1109/CDC.2009.5399999.  Google Scholar

[23]

J. L. Crassidis and J. L. Junkins, Optimal Estimation of Dynamic Systems, 2nd edition, Chapman & Hall/CRC, 2012.  Google Scholar

[24]

J. L. CrassidisF. L. Markley and Y. Cheng, Survey of nonlinear attitude estimation methods, Journal of Guidance, Control, and Dynamics, 30 (2007), 12-28.  doi: 10.2514/1.22452.  Google Scholar

[25]

G. Dissanayake, S. Huang, Z. Wang and R. Ranasinghe, A review of recent developments in simultaneous localization and mapping, 2011 6th International Conference on Industrial and Information Systems, ICIIS 2011 - Conference Proceedings. doi: 10.1109/ICIINFS.2011.6038117.  Google Scholar

[26]

J. J. Duistermaat and J. A. C. Kolk, Lie Groups, Springer-Verlag Berlin Heidelberg, 2000. doi: 10.1007/978-3-642-56936-4.  Google Scholar

[27]

H. Durrant-Whyte and T. Bailey, Simultaneous localization and mapping: part i, IEEE Robotics Automation Magazine, 13 (2006), 99-110.  doi: 10.1109/MRA.2006.1638022.  Google Scholar

[28]

M.-D. Hua, M. Zamani, J. Trumpf, R. Mahony and T. Hamel, Observer design on the special euclidean group se(3), in 2011 50th IEEE Conference on Decision and Control and European Control Conference, 2011, 8169–8175. doi: 10.1109/CDC.2011.6160453.  Google Scholar

[29]

S. J. Julier and J. K. Uhlmann, Unscented filtering and nonlinear estimation, Proceedings of the IEEE, 92 (2004), 401-422.  doi: 10.1109/JPROC.2003.823141.  Google Scholar

[30]

S. J. Julier, J. K. Uhlmann and H. F. Durrant-Whyte, A new approach for filtering nonlinear systems, in Proceedings of 1995 American Control Conference - ACC'95, vol. 3, 1995, 1628–1632. Google Scholar

[31]

R. E. Kalman, A new approach to linear filtering and prediction problems, Journal of Basic Engineering, 82 (1960), 35-45.  doi: 10.1115/1.3662552.  Google Scholar

[32]

R. E. Kalman and R. S. Bucy, New results in linear filtering and prediction theory, Journal of Basic Engineering, 83 (1961), 95-108.  doi: 10.1115/1.3658902.  Google Scholar

[33]

A. Khosravian, T. Chin, I. Reid and R. Mahony, A discrete-time attitude observer on so(3) for vision and gps fusion, in 2017 IEEE International Conference on Robotics and Automation (ICRA), 2017, 5688–5695. doi: 10.1109/ICRA.2017.7989669.  Google Scholar

[34]

S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, vol. 1, Interscience Publishers, 1963.  Google Scholar

[35]

C. LagemanJ. Trumpf and R. Mahony, Gradient-like observers for invariant dynamics on a lie group, IEEE Transactions on Automatic Control, 55 (2010), 367-377.  doi: 10.1109/TAC.2009.2034937.  Google Scholar

[36]

F. Le Bras, T. Hamel, R. Mahony and C. Samson, Observer design for position and velocity bias estimation from a single direction output, in 2015 54th IEEE Conference on Decision and Control (CDC), 2015, 7648–7653. doi: 10.1109/CDC.2015.7403428.  Google Scholar

[37]

K. W. Lee, W. S. Wijesoma and J. I. Guzman, On the observability and observability analysis of slam, in 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006, 3569–3574. doi: 10.1109/IROS.2006.281646.  Google Scholar

[38]

E. J. LeffertsF. L. Markley and M. D. Shuster, Kalman filtering for spacecraft attitude estimation, Journal of Guidance, Control, and Dynamics, 5 (1982), 417-429.  doi: 10.2514/3.56190.  Google Scholar

[39]

D. G. Luenberger, Observing the state of a linear system, IEEE Transactions on Military Electronics, 8 (1964), 74-80.  doi: 10.1109/TME.1964.4323124.  Google Scholar

[40]

Ba-Ngu Vo Mahendra Mallick Vikram Krishnamurthy (ed.), Integrated Tracking, Classification, and Sensor Management, Artech House, 2012. Google Scholar

[41]

R. Mahony and T. Hamel, A geometric nonlinear observer for simultaneous localisation and mapping, in 2017 IEEE 56th Annual Conference on Decision and Control (CDC), 2017, 2408–2415. doi: 10.1109/CDC.2017.8264002.  Google Scholar

[42]

R. MahonyT. Hamel and J.-M. Pflimlin, Nonlinear complementary filters on the special orthogonal group, IEEE Transactions on Automatic Control, 53 (2008), 1203-1218.  doi: 10.1109/TAC.2008.923738.  Google Scholar

[43]

R. Mahony, T. Hamel, J. Trumpf and C. Lageman, Nonlinear attitude observers on so(3) for complementary and compatible measurements: A theoretical study, in Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference, 2009, 6407–6412. doi: 10.1109/CDC.2009.5399821.  Google Scholar

[44]

R. MahonyT. HamelP. Morin and E. Malis, Nonlinear complementary filters on the special linear group, International Journal of Control, 85 (2012), 1557-1573.  doi: 10.1080/00207179.2012.693951.  Google Scholar

[45]

R. Mahony, J. Trumpf and T. Hamel, Observers for kinematic systems with symmetry, IFAC Proceedings Volumes, 46 (2013), 617–633, 9th IFAC Symposium on Nonlinear Control Systems. doi: 10.3182/20130904-3-FR-2041.00212.  Google Scholar

[46]

M. MallickY. Bar-ShalomT. Kirubarajan and M. Moreland, An improved single-point track initiation using gmti measurements, IEEE Transactions on Aerospace and Electronic Systems, 51 (2015), 2697-2714.  doi: 10.1109/TAES.2015.140599.  Google Scholar

[47]

F. L. Markley, Attitude error representations for kalman filtering, Journal of Guidance, Control, and Dynamics, 26 (2003), 311-317.  doi: 10.2514/2.5048.  Google Scholar

[48]

F. L. Markley and J. L. Crassidis, Fundamentals of Spacecraft Attitude Determination and Control, 1st edition, Springer-Verlag New York, 2014. doi: 10.1007/978-1-4939-0802-8.  Google Scholar

[49]

J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry, 2nd edition, Springer-Verlag New York, 1999. doi: 10.1007/978-0-387-21792-5.  Google Scholar

[50] J. Milnor, Morse Theory, vol. 51 of Annals of Mathematics Studies, Princeton University Press, 1963.  doi: 10.1515/9781400881802.  Google Scholar
[51]

A. SacconJ. TrumpfR. Mahony and A. P. Aguiar, Second-order-optimal minimum-energy filters on lie groups, IEEE Transactions on Automatic Control, 61 (2016), 2906-2919.  doi: 10.1109/TAC.2015.2506662.  Google Scholar

[52]

J. Thienel and R. M. Sanner, A coupled nonlinear spacecraft attitude controller and observer with an unknown constant gyro bias and gyro noise, IEEE Transactions on Automatic Control, 48 (2003), 2011-2015.  doi: 10.1109/TAC.2003.819289.  Google Scholar

[53]

J. Trumpf, R. Mahony and T. Hamel, On the structure of kinematic systems with complete symmetry, in 2018 IEEE Conference on Decision and Control (CDC), 2018, 1276–1280. doi: 10.1109/CDC.2018.8619718.  Google Scholar

[54]

J. F. Vasconcelos, R. Cunha, C. Silvestre and P. Oliveira, Landmark based nonlinear observer for rigid body attitude and position estimation, in 2007 46th IEEE Conference on Decision and Control, 2007, 1033–1038. doi: 10.1109/CDC.2007.4434417.  Google Scholar

[55]

M. Wang and A. Tayebi, Geometric nonlinear observer design for slam on a matrix lie group, in 2018 IEEE Conference on Decision and Control (CDC), 2018, 1488–1493. doi: 10.1109/CDC.2018.8619501.  Google Scholar

[56]

D. S. Watkins, Fundamentals of Matrix Computations, 3rd edition, John Wiley & Sons, Inc., Hoboken, New Jersey, 2010.  Google Scholar

[57]

M. ZamaniJ. Trumpf and R. Mahony, Near-optimal deterministic filtering on the rotation group, IEEE Transactions on Automatic Control, 56 (2011), 1411-1414.  doi: 10.1109/TAC.2011.2109436.  Google Scholar

[58]

M. ZamaniJ. Trumpf and R. Mahony, Minimum-energy filtering for attitude estimation, IEEE Transactions on Automatic Control, 58 (2013), 2917-2921.  doi: 10.1109/TAC.2013.2259092.  Google Scholar

[59]

D. E. Zlotnik and J. R. Forbes, Gradient-based observer for simultaneous localization and mapping, IEEE Transactions on Automatic Control, 63 (2018), 4338-4344.  doi: 10.1109/TAC.2018.2829467.  Google Scholar

show all references

References:
[1]

D. Auroux and S. Bonnabel, Symmetry-based observers for some water-tank problems, IEEE Transactions on Automatic Control, 56 (2011), 1046-1058.  doi: 10.1109/TAC.2010.2067291.  Google Scholar

[2]

T. Bailey and H. Durrant-Whyte, Simultaneous localization and mapping (slam): Part II, IEEE Robotics Automation Magazine, 13 (2006), 108-117.  doi: 10.1109/MRA.2006.1678144.  Google Scholar

[3]

G. Baldwin, R. Mahony and J. Trumpf, A nonlinear observer for 6 dof pose estimation from inertial and bearing measurements, in 2009 IEEE International Conference on Robotics and Automation, 2009, 2237–2242. doi: 10.1109/ROBOT.2009.5152242.  Google Scholar

[4]

G. Baldwin, R. Mahony, J. Trumpf, T. Hamel and T. Cheviron, Complementary filter design on the special euclidean group se(3), in 2007 European Control Conference (ECC), 2007, 3763–3770. doi: 10.23919/ECC.2007.7068746.  Google Scholar

[5]

A. Barrau and S. Bonnabel, Intrinsic filtering on lie groups with applications to attitude estimation, IEEE Transactions on Automatic Control, 60 (2015), 436-449.  doi: 10.1109/TAC.2014.2342911.  Google Scholar

[6]

A. Barrau and S. Bonnabel, The invariant extended kalman filter as a stable observer, IEEE Transactions on Automatic Control, 62 (2017), 1797-1812.  doi: 10.1109/TAC.2016.2594085.  Google Scholar

[7]

A. Barrau and S. Bonnabel, Three examples of the stability properties of the invariant extended kalman filter, IFAC-PapersOnLine, 50 (2017), 431 – 437, 20th IFAC World Congress. doi: 10.1016/j.ifacol.2017.08.061.  Google Scholar

[8]

A. Barrau and S. Bonnabel, Invariant kalman filtering, Annual Review of Control, Robotics, and Autonomous Systems, 1 (2018), 237-257.  doi: 10.1146/annurev-control-060117-105010.  Google Scholar

[9]

A. N. Bishop, P. N. Pathirana and A. V. Savkin, Target tracking with range and bearing measurements via robust linear filtering, in 2007 3rd International Conference on Intelligent Sensors, Sensor Networks and Information, 2007,131–135. doi: 10.1109/ISSNIP.2007.4496832.  Google Scholar

[10]

A. M. BlochDong Eui ChangN. E. Leonard and J. E. Marsden, Controlled lagrangians and the stabilization of mechanical systems. ii. potential shaping, IEEE Transactions on Automatic Control, 46 (2001), 1556-1571.  doi: 10.1109/9.956051.  Google Scholar

[11]

A. M. BlochN. E. Leonard and J. E. Marsden, Controlled lagrangians and the stabilization of mechanical systems. i. the first matching theorem, IEEE Transactions on Automatic Control, 45 (2000), 2253-2270.  doi: 10.1109/9.895562.  Google Scholar

[12]

A. M. Bloch, Nonholonomic Mechanics and Control, Springer-Verlag New York, 2015. doi: 10.1007/978-1-4939-3017-3.  Google Scholar

[13]

S. Bonnabel, Left-invariant extended kalman filter and attitude estimation, in 2007 46th IEEE Conference on Decision and Control, 2007, 1027–1032. doi: 10.1109/CDC.2007.4434662.  Google Scholar

[14]

S. BonnabelP. Martin and P. Rouchon, Symmetry-preserving observers, IEEE Transactions on Automatic Control, 53 (2008), 2514-2526.  doi: 10.1109/TAC.2008.2006929.  Google Scholar

[15]

S. BonnabelP. Martin and P. Rouchon, Non-linear symmetry-preserving observers on lie groups, IEEE Transactions on Automatic Control, 54 (2009), 1709-1713.  doi: 10.1109/TAC.2009.2020646.  Google Scholar

[16]

S. Bonnabel, P. Martin, P. Rouchon and E. Salaün, A separation principle on lie groups, IFAC Proceedings Volumes, 44 (2011), 8004 – 8009, 18th IFAC World Congress. doi: 10.3182/20110828-6-IT-1002.03353.  Google Scholar

[17]

S. Bonnable, P. Martin and E. Salaün, Invariant extended kalman filter: theory and application to a velocity-aided attitude estimation problem, in Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference, 2009, 1297–1304. doi: 10.1109/CDC.2009.5400372.  Google Scholar

[18]

G. Bourmaud, R. Mégret, A. Giremus and Y. Berthoumieu, Discrete extended kalman filter on lie groups, in 21st European Signal Processing Conference (EUSIPCO 2013), 2013, 1–5. Google Scholar

[19]

N. G. Branko Ristic Sanjeev Arulampalam, Beyond the Kalman Filter, Wiley-IEEE, 2004. Google Scholar

[20]

F. Bullo and A. D. Lewis, Geometric Control of Mechanical Systems, Springer-Verlag New York, 2005. doi: 10.1007/978-1-4899-7276-7.  Google Scholar

[21]

C. CadenaL. CarloneH. CarrilloY. LatifD. ScaramuzzaJ. NeiraI. Reid and J. J. Leonard, Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age, IEEE Transactions on Robotics, 32 (2016), 1309-1332.  doi: 10.1109/TRO.2016.2624754.  Google Scholar

[22]

P. Coote, J. Trumpf, R. Mahony and J. C. Willems, Near-optimal deterministic filtering on the unit circle, in Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference, 2009, 5490–5495. doi: 10.1109/CDC.2009.5399999.  Google Scholar

[23]

J. L. Crassidis and J. L. Junkins, Optimal Estimation of Dynamic Systems, 2nd edition, Chapman & Hall/CRC, 2012.  Google Scholar

[24]

J. L. CrassidisF. L. Markley and Y. Cheng, Survey of nonlinear attitude estimation methods, Journal of Guidance, Control, and Dynamics, 30 (2007), 12-28.  doi: 10.2514/1.22452.  Google Scholar

[25]

G. Dissanayake, S. Huang, Z. Wang and R. Ranasinghe, A review of recent developments in simultaneous localization and mapping, 2011 6th International Conference on Industrial and Information Systems, ICIIS 2011 - Conference Proceedings. doi: 10.1109/ICIINFS.2011.6038117.  Google Scholar

[26]

J. J. Duistermaat and J. A. C. Kolk, Lie Groups, Springer-Verlag Berlin Heidelberg, 2000. doi: 10.1007/978-3-642-56936-4.  Google Scholar

[27]

H. Durrant-Whyte and T. Bailey, Simultaneous localization and mapping: part i, IEEE Robotics Automation Magazine, 13 (2006), 99-110.  doi: 10.1109/MRA.2006.1638022.  Google Scholar

[28]

M.-D. Hua, M. Zamani, J. Trumpf, R. Mahony and T. Hamel, Observer design on the special euclidean group se(3), in 2011 50th IEEE Conference on Decision and Control and European Control Conference, 2011, 8169–8175. doi: 10.1109/CDC.2011.6160453.  Google Scholar

[29]

S. J. Julier and J. K. Uhlmann, Unscented filtering and nonlinear estimation, Proceedings of the IEEE, 92 (2004), 401-422.  doi: 10.1109/JPROC.2003.823141.  Google Scholar

[30]

S. J. Julier, J. K. Uhlmann and H. F. Durrant-Whyte, A new approach for filtering nonlinear systems, in Proceedings of 1995 American Control Conference - ACC'95, vol. 3, 1995, 1628–1632. Google Scholar

[31]

R. E. Kalman, A new approach to linear filtering and prediction problems, Journal of Basic Engineering, 82 (1960), 35-45.  doi: 10.1115/1.3662552.  Google Scholar

[32]

R. E. Kalman and R. S. Bucy, New results in linear filtering and prediction theory, Journal of Basic Engineering, 83 (1961), 95-108.  doi: 10.1115/1.3658902.  Google Scholar

[33]

A. Khosravian, T. Chin, I. Reid and R. Mahony, A discrete-time attitude observer on so(3) for vision and gps fusion, in 2017 IEEE International Conference on Robotics and Automation (ICRA), 2017, 5688–5695. doi: 10.1109/ICRA.2017.7989669.  Google Scholar

[34]

S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, vol. 1, Interscience Publishers, 1963.  Google Scholar

[35]

C. LagemanJ. Trumpf and R. Mahony, Gradient-like observers for invariant dynamics on a lie group, IEEE Transactions on Automatic Control, 55 (2010), 367-377.  doi: 10.1109/TAC.2009.2034937.  Google Scholar

[36]

F. Le Bras, T. Hamel, R. Mahony and C. Samson, Observer design for position and velocity bias estimation from a single direction output, in 2015 54th IEEE Conference on Decision and Control (CDC), 2015, 7648–7653. doi: 10.1109/CDC.2015.7403428.  Google Scholar

[37]

K. W. Lee, W. S. Wijesoma and J. I. Guzman, On the observability and observability analysis of slam, in 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006, 3569–3574. doi: 10.1109/IROS.2006.281646.  Google Scholar

[38]

E. J. LeffertsF. L. Markley and M. D. Shuster, Kalman filtering for spacecraft attitude estimation, Journal of Guidance, Control, and Dynamics, 5 (1982), 417-429.  doi: 10.2514/3.56190.  Google Scholar

[39]

D. G. Luenberger, Observing the state of a linear system, IEEE Transactions on Military Electronics, 8 (1964), 74-80.  doi: 10.1109/TME.1964.4323124.  Google Scholar

[40]

Ba-Ngu Vo Mahendra Mallick Vikram Krishnamurthy (ed.), Integrated Tracking, Classification, and Sensor Management, Artech House, 2012. Google Scholar

[41]

R. Mahony and T. Hamel, A geometric nonlinear observer for simultaneous localisation and mapping, in 2017 IEEE 56th Annual Conference on Decision and Control (CDC), 2017, 2408–2415. doi: 10.1109/CDC.2017.8264002.  Google Scholar

[42]

R. MahonyT. Hamel and J.-M. Pflimlin, Nonlinear complementary filters on the special orthogonal group, IEEE Transactions on Automatic Control, 53 (2008), 1203-1218.  doi: 10.1109/TAC.2008.923738.  Google Scholar

[43]

R. Mahony, T. Hamel, J. Trumpf and C. Lageman, Nonlinear attitude observers on so(3) for complementary and compatible measurements: A theoretical study, in Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference, 2009, 6407–6412. doi: 10.1109/CDC.2009.5399821.  Google Scholar

[44]

R. MahonyT. HamelP. Morin and E. Malis, Nonlinear complementary filters on the special linear group, International Journal of Control, 85 (2012), 1557-1573.  doi: 10.1080/00207179.2012.693951.  Google Scholar

[45]

R. Mahony, J. Trumpf and T. Hamel, Observers for kinematic systems with symmetry, IFAC Proceedings Volumes, 46 (2013), 617–633, 9th IFAC Symposium on Nonlinear Control Systems. doi: 10.3182/20130904-3-FR-2041.00212.  Google Scholar

[46]

M. MallickY. Bar-ShalomT. Kirubarajan and M. Moreland, An improved single-point track initiation using gmti measurements, IEEE Transactions on Aerospace and Electronic Systems, 51 (2015), 2697-2714.  doi: 10.1109/TAES.2015.140599.  Google Scholar

[47]

F. L. Markley, Attitude error representations for kalman filtering, Journal of Guidance, Control, and Dynamics, 26 (2003), 311-317.  doi: 10.2514/2.5048.  Google Scholar

[48]

F. L. Markley and J. L. Crassidis, Fundamentals of Spacecraft Attitude Determination and Control, 1st edition, Springer-Verlag New York, 2014. doi: 10.1007/978-1-4939-0802-8.  Google Scholar

[49]

J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry, 2nd edition, Springer-Verlag New York, 1999. doi: 10.1007/978-0-387-21792-5.  Google Scholar

[50] J. Milnor, Morse Theory, vol. 51 of Annals of Mathematics Studies, Princeton University Press, 1963.  doi: 10.1515/9781400881802.  Google Scholar
[51]

A. SacconJ. TrumpfR. Mahony and A. P. Aguiar, Second-order-optimal minimum-energy filters on lie groups, IEEE Transactions on Automatic Control, 61 (2016), 2906-2919.  doi: 10.1109/TAC.2015.2506662.  Google Scholar

[52]

J. Thienel and R. M. Sanner, A coupled nonlinear spacecraft attitude controller and observer with an unknown constant gyro bias and gyro noise, IEEE Transactions on Automatic Control, 48 (2003), 2011-2015.  doi: 10.1109/TAC.2003.819289.  Google Scholar

[53]

J. Trumpf, R. Mahony and T. Hamel, On the structure of kinematic systems with complete symmetry, in 2018 IEEE Conference on Decision and Control (CDC), 2018, 1276–1280. doi: 10.1109/CDC.2018.8619718.  Google Scholar

[54]

J. F. Vasconcelos, R. Cunha, C. Silvestre and P. Oliveira, Landmark based nonlinear observer for rigid body attitude and position estimation, in 2007 46th IEEE Conference on Decision and Control, 2007, 1033–1038. doi: 10.1109/CDC.2007.4434417.  Google Scholar

[55]

M. Wang and A. Tayebi, Geometric nonlinear observer design for slam on a matrix lie group, in 2018 IEEE Conference on Decision and Control (CDC), 2018, 1488–1493. doi: 10.1109/CDC.2018.8619501.  Google Scholar

[56]

D. S. Watkins, Fundamentals of Matrix Computations, 3rd edition, John Wiley & Sons, Inc., Hoboken, New Jersey, 2010.  Google Scholar

[57]

M. ZamaniJ. Trumpf and R. Mahony, Near-optimal deterministic filtering on the rotation group, IEEE Transactions on Automatic Control, 56 (2011), 1411-1414.  doi: 10.1109/TAC.2011.2109436.  Google Scholar

[58]

M. ZamaniJ. Trumpf and R. Mahony, Minimum-energy filtering for attitude estimation, IEEE Transactions on Automatic Control, 58 (2013), 2917-2921.  doi: 10.1109/TAC.2013.2259092.  Google Scholar

[59]

D. E. Zlotnik and J. R. Forbes, Gradient-based observer for simultaneous localization and mapping, IEEE Transactions on Automatic Control, 63 (2018), 4338-4344.  doi: 10.1109/TAC.2018.2829467.  Google Scholar

Figure 1.  Fiber bundle, projection, base space and orbits
Figure 2.  Isotropy subgroup of $ p $, $ G_p \subset G $
Figure 3.  Section
Figure 4.  Horizontal and vertical space decomposition at any arbitrary point $ p \in P $
Figure 5.  Action of $ \gamma_{\sigma_P} $
Figure 6.  Figure for the proof of Lemma 3.1. (Arrows indicate vectors)
Figure 7.  Radar
Table 1.  Summary of Structure
$ P = \mathbb{R}^3 \setminus \{0\} $ $ G = {\mathop{\mathbb{SO}(3)}} $ $ \mathcal{Y} = \mathbb{S}^2\times \mathbb{S}^2 $
$ P = \mathbb{R}^3 \setminus \{0\} $ $ G = {\mathop{\mathbb{SO}(3)}} $ $ \mathcal{Y} = \mathbb{S}^2\times \mathbb{S}^2 $
Table 2.  Summary of Structure
$ P = \mathbb{R}^3 \setminus \{0\} $ $ G = {\mathop{\mathbb{SO}(3)}} $ $ \phi(g,p) = gp $
$ P = \mathbb{R}^3 \setminus \{0\} $ $ G = {\mathop{\mathbb{SO}(3)}} $ $ \phi(g,p) = gp $
Table 3.  Summary of Structure
$ P ={\mathop{\mathbb{SE}(3)}} \times \mathbb{E} $ $ G = {\mathop{\mathbb{SE}(3)}} $ $ \mathcal{Y} = \mathbb{E} $
$ P ={\mathop{\mathbb{SE}(3)}} \times \mathbb{E} $ $ G = {\mathop{\mathbb{SE}(3)}} $ $ \mathcal{Y} = \mathbb{E} $
[1]

Hiroaki Yoshimura, Jerrold E. Marsden. Dirac cotangent bundle reduction. Journal of Geometric Mechanics, 2009, 1 (1) : 87-158. doi: 10.3934/jgm.2009.1.87

[2]

Indranil Biswas, Georg Schumacher, Lin Weng. Deligne pairing and determinant bundle. Electronic Research Announcements, 2011, 18: 91-96. doi: 10.3934/era.2011.18.91

[3]

V. M. Gundlach, Yu. Kifer. Expansiveness, specification, and equilibrium states for random bundle transformations. Discrete & Continuous Dynamical Systems, 2000, 6 (1) : 89-120. doi: 10.3934/dcds.2000.6.89

[4]

Oliver Butterley, Carlangelo Liverani. Robustly invariant sets in fiber contracting bundle flows. Journal of Modern Dynamics, 2013, 7 (2) : 255-267. doi: 10.3934/jmd.2013.7.255

[5]

Simon Scott. Relative zeta determinants and the geometry of the determinant line bundle. Electronic Research Announcements, 2001, 7: 8-16.

[6]

Robert Skiba, Nils Waterstraat. The index bundle and multiparameter bifurcation for discrete dynamical systems. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5603-5629. doi: 10.3934/dcds.2017243

[7]

Ming Huang, Xi-Jun Liang, Yuan Lu, Li-Ping Pang. The bundle scheme for solving arbitrary eigenvalue optimizations. Journal of Industrial & Management Optimization, 2017, 13 (2) : 659-680. doi: 10.3934/jimo.2016039

[8]

Chunming Tang, Jinbao Jian, Guoyin Li. A proximal-projection partial bundle method for convex constrained minimax problems. Journal of Industrial & Management Optimization, 2019, 15 (2) : 757-774. doi: 10.3934/jimo.2018069

[9]

Hui Gao, Jian Lv, Xiaoliang Wang, Liping Pang. An alternating linearization bundle method for a class of nonconvex optimization problem with inexact information. Journal of Industrial & Management Optimization, 2021, 17 (2) : 805-825. doi: 10.3934/jimo.2019135

[10]

Xianfeng Ma, Ercai Chen. Pre-image variational principle for bundle random dynamical systems. Discrete & Continuous Dynamical Systems, 2009, 23 (3) : 957-972. doi: 10.3934/dcds.2009.23.957

[11]

Michał Jóźwikowski, Mikołaj Rotkiewicz. Bundle-theoretic methods for higher-order variational calculus. Journal of Geometric Mechanics, 2014, 6 (1) : 99-120. doi: 10.3934/jgm.2014.6.99

[12]

Hssaine Boualam, Ahmed Roubi. Dual algorithms based on the proximal bundle method for solving convex minimax fractional programs. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1897-1920. doi: 10.3934/jimo.2018128

[13]

Harsh Pittie and Arun Ram. A Pieri-Chevalley formula in the K-theory of aG/B-bundle. Electronic Research Announcements, 1999, 5: 102-107.

[14]

Stefan Sommer, Anne Marie Svane. Modelling anisotropic covariance using stochastic development and sub-Riemannian frame bundle geometry. Journal of Geometric Mechanics, 2017, 9 (3) : 391-410. doi: 10.3934/jgm.2017015

[15]

David Burguet, Todd Fisher. Symbolic extensionsfor partially hyperbolic dynamical systems with 2-dimensional center bundle. Discrete & Continuous Dynamical Systems, 2013, 33 (6) : 2253-2270. doi: 10.3934/dcds.2013.33.2253

[16]

Michele Zadra, Elizabeth L. Mansfield. Using Lie group integrators to solve two and higher dimensional variational problems with symmetry. Journal of Computational Dynamics, 2019, 6 (2) : 485-511. doi: 10.3934/jcd.2019025

[17]

V. Balaji, I. Biswas and D. S. Nagaraj. Principal bundles with parabolic structure. Electronic Research Announcements, 2001, 7: 37-44.

[18]

Yusi Fan, Chenrui Yao, Liangyun Chen. Structure of sympathetic Lie superalgebras. Electronic Research Archive, , () : -. doi: 10.3934/era.2021020

[19]

Franz W. Kamber and Peter W. Michor. Completing Lie algebra actions to Lie group actions. Electronic Research Announcements, 2004, 10: 1-10.

[20]

Katarzyna Grabowska, Marcin Zając. The Tulczyjew triple in mechanics on a Lie group. Journal of Geometric Mechanics, 2016, 8 (4) : 413-435. doi: 10.3934/jgm.2016014

2020 Impact Factor: 0.857

Article outline

Figures and Tables

[Back to Top]