doi: 10.3934/jgm.2021017
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Error analysis of forced discrete mechanical systems

1. 

Instituto Balseiro, Universidad Nacional de Cuyo – C.N.E.A., Av. Bustillo 9500, San Carlos de Bariloche, R8402AGP, República Argentina

2. 

Graduate School of Mathematics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819- 0395, Japan

3. 

Instituto Balseiro, Universidad Nacional de Cuyo – C.N.E.A. and CONICET, Av. Bustillo 9500, San Carlos de Bariloche, R8402AGP, República Argentina

Received  August 2019 Revised  March 2021 Early access August 2021

Fund Project: This research was partially supported by grants from the Universidad Nacional de Cuyo (grants 06/C567 and 06/C574) and CONICET

The purpose of this paper is to perform an error analysis of the variational integrators of mechanical systems subject to external forcing. Essentially, we prove that when a discretization of contact order $ r $ of the Lagrangian and force are used, the integrator has the same contact order. Our analysis is performed first for discrete forced mechanical systems defined over $ TQ $, where we study the existence of flows, the construction and properties of discrete exact systems and the contact order of the flows (variational integrators) in terms of the contact order of the original systems. Then we use those results to derive the corresponding analysis for the analogous forced systems defined over $ Q\times Q $.

Citation: Javier Fernández, Sebastián Elías Graiff Zurita, Sergio Grillo. Error analysis of forced discrete mechanical systems. Journal of Geometric Mechanics, doi: 10.3934/jgm.2021017
References:
[1]

R. Abraham and J. E. Marsden, Foundations of Mechanics, 2$^{nd}$ edition, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978.  Google Scholar

[2]

W. M. Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry, 2$^{nd}$ edition, Pure and Applied Mathematics, vol. 120, Academic Press Inc., Orlando, FL, 1986.  Google Scholar

[3]

A. Cannas da Silva, Lectures on Symplectic Geometry, Lecture Notes in Mathematics, vol. 1764, Springer-Verlag, Berlin, 2001. doi: 10.1007/978-3-540-45330-7.  Google Scholar

[4]

H. CendraS. Ferraro and S. Grillo, Lagrangian reduction of generalized nonholonomic systems, J. Geom. Phys., 58 (2008), 1271-1290.  doi: 10.1016/j.geomphys.2008.05.002.  Google Scholar

[5]

H. Cendra, J. E. Marsden and T. S. Ratiu, Lagrangian reduction by stages, Mem. Amer. Math. Soc., 152 (2001), 108pp. doi: 10.1090/memo/0722.  Google Scholar

[6]

C. Cuell and G. W. Patrick, Skew critical problems, Regul. Chaotic Dyn., 12 (2007), 589-601.  doi: 10.1134/S1560354707060020.  Google Scholar

[7]

——, Geometric discrete analogues of tangent bundles and constrained Lagrangian systems, J. Geom. Phys., 59 (2009), 976-997.  doi: 10.1016/j.geomphys.2009.04.005.  Google Scholar

[8]

J. C. Marrero, D. Martín de Diego and E. Martínez, On the Exact Discrete Lagrangian Function for Variational Integrators: Theory and Applications, arXiv: 1608.01586, 2016. Google Scholar

[9]

J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry, 2$^{nd}$ edition, A Basic Exposition of Classical Mechanical Systems, Texts in Applied Mathematics, 17. Springer-Verlag, New York, 1999. doi: 10.1007/978-0-387-21792-5.  Google Scholar

[10]

J. E. Marsden and M. West, Discrete mechanics and variational integrators, Acta Numer., 10 (2001), 357-514.  doi: 10.1017/S096249290100006X.  Google Scholar

[11]

D. Martín de Diego and R. Sato Martín de Almagro, Variational order for forced Lagrangian systems, Nonlinearity, 31 (2018), 3814-3846.  doi: 10.1088/1361-6544/aac5a6.  Google Scholar

[12]

G. W. Patrick and C. Cuell, Error analysis of variational integrators of unconstrained Lagrangian systems, Numer. Math., 113 (2009), 243-264.  doi: 10.1007/s00211-009-0245-3.  Google Scholar

[13]

W. M. Tulczyjew and P. Urbański, A slow and careful Legendre transformation for singular Lagrangians, Acta Phys. Polon. B, The Infeld Centennial Meeting (Warsaw, 1998), 30 (1999), 2909–2978.  Google Scholar

[14]

H. Whitney, Differentiability of the remainder term in Taylor's formula, Duke Math. J., 10 (1943), 153-158.   Google Scholar

show all references

References:
[1]

R. Abraham and J. E. Marsden, Foundations of Mechanics, 2$^{nd}$ edition, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978.  Google Scholar

[2]

W. M. Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry, 2$^{nd}$ edition, Pure and Applied Mathematics, vol. 120, Academic Press Inc., Orlando, FL, 1986.  Google Scholar

[3]

A. Cannas da Silva, Lectures on Symplectic Geometry, Lecture Notes in Mathematics, vol. 1764, Springer-Verlag, Berlin, 2001. doi: 10.1007/978-3-540-45330-7.  Google Scholar

[4]

H. CendraS. Ferraro and S. Grillo, Lagrangian reduction of generalized nonholonomic systems, J. Geom. Phys., 58 (2008), 1271-1290.  doi: 10.1016/j.geomphys.2008.05.002.  Google Scholar

[5]

H. Cendra, J. E. Marsden and T. S. Ratiu, Lagrangian reduction by stages, Mem. Amer. Math. Soc., 152 (2001), 108pp. doi: 10.1090/memo/0722.  Google Scholar

[6]

C. Cuell and G. W. Patrick, Skew critical problems, Regul. Chaotic Dyn., 12 (2007), 589-601.  doi: 10.1134/S1560354707060020.  Google Scholar

[7]

——, Geometric discrete analogues of tangent bundles and constrained Lagrangian systems, J. Geom. Phys., 59 (2009), 976-997.  doi: 10.1016/j.geomphys.2009.04.005.  Google Scholar

[8]

J. C. Marrero, D. Martín de Diego and E. Martínez, On the Exact Discrete Lagrangian Function for Variational Integrators: Theory and Applications, arXiv: 1608.01586, 2016. Google Scholar

[9]

J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry, 2$^{nd}$ edition, A Basic Exposition of Classical Mechanical Systems, Texts in Applied Mathematics, 17. Springer-Verlag, New York, 1999. doi: 10.1007/978-0-387-21792-5.  Google Scholar

[10]

J. E. Marsden and M. West, Discrete mechanics and variational integrators, Acta Numer., 10 (2001), 357-514.  doi: 10.1017/S096249290100006X.  Google Scholar

[11]

D. Martín de Diego and R. Sato Martín de Almagro, Variational order for forced Lagrangian systems, Nonlinearity, 31 (2018), 3814-3846.  doi: 10.1088/1361-6544/aac5a6.  Google Scholar

[12]

G. W. Patrick and C. Cuell, Error analysis of variational integrators of unconstrained Lagrangian systems, Numer. Math., 113 (2009), 243-264.  doi: 10.1007/s00211-009-0245-3.  Google Scholar

[13]

W. M. Tulczyjew and P. Urbański, A slow and careful Legendre transformation for singular Lagrangians, Acta Phys. Polon. B, The Infeld Centennial Meeting (Warsaw, 1998), 30 (1999), 2909–2978.  Google Scholar

[14]

H. Whitney, Differentiability of the remainder term in Taylor's formula, Duke Math. J., 10 (1943), 153-158.   Google Scholar

[1]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of discrete mechanical systems by stages. Journal of Geometric Mechanics, 2016, 8 (1) : 35-70. doi: 10.3934/jgm.2016.8.35

[2]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[3]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems. Journal of Geometric Mechanics, 2010, 2 (1) : 69-111. doi: 10.3934/jgm.2010.2.69

[4]

Viviana Alejandra Díaz, David Martín de Diego. Generalized variational calculus for continuous and discrete mechanical systems. Journal of Geometric Mechanics, 2018, 10 (4) : 373-410. doi: 10.3934/jgm.2018014

[5]

Anthony M. Bloch, Melvin Leok, Jerrold E. Marsden, Dmitry V. Zenkov. Controlled Lagrangians and stabilization of discrete mechanical systems. Discrete & Continuous Dynamical Systems - S, 2010, 3 (1) : 19-36. doi: 10.3934/dcdss.2010.3.19

[6]

Anthony M. Bloch, Peter E. Crouch, Nikolaj Nordkvist. Continuous and discrete embedded optimal control problems and their application to the analysis of Clebsch optimal control problems and mechanical systems. Journal of Geometric Mechanics, 2013, 5 (1) : 1-38. doi: 10.3934/jgm.2013.5.1

[7]

Sandra Ricardo, Witold Respondek. When is a control system mechanical?. Journal of Geometric Mechanics, 2010, 2 (3) : 265-302. doi: 10.3934/jgm.2010.2.265

[8]

Firdaus E. Udwadia, Thanapat Wanichanon. On general nonlinear constrained mechanical systems. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 425-443. doi: 10.3934/naco.2013.3.425

[9]

Leo T. Butler. A note on integrable mechanical systems on surfaces. Discrete & Continuous Dynamical Systems, 2014, 34 (5) : 1873-1878. doi: 10.3934/dcds.2014.34.1873

[10]

Kathrin Flasskamp, Sebastian Hage-Packhäuser, Sina Ober-Blöbaum. Symmetry exploiting control of hybrid mechanical systems. Journal of Computational Dynamics, 2015, 2 (1) : 25-50. doi: 10.3934/jcd.2015.2.25

[11]

Leonardo Colombo, David Martín de Diego. Optimal control of underactuated mechanical systems with symmetries. Conference Publications, 2013, 2013 (special) : 149-158. doi: 10.3934/proc.2013.2013.149

[12]

Manuel Falconi, E. A. Lacomba, C. Vidal. The flow of classical mechanical cubic potential systems. Discrete & Continuous Dynamical Systems, 2004, 11 (4) : 827-842. doi: 10.3934/dcds.2004.11.827

[13]

Franco Cardin, Alberto Lovison. Finite mechanical proxies for a class of reducible continuum systems. Networks & Heterogeneous Media, 2014, 9 (3) : 417-432. doi: 10.3934/nhm.2014.9.417

[14]

Leonardo Colombo, Fernando Jiménez, David Martín de Diego. Variational integrators for mechanical control systems with symmetries. Journal of Computational Dynamics, 2015, 2 (2) : 193-225. doi: 10.3934/jcd.2015003

[15]

Samir Adly, Daniel Goeleven. A nonsmooth approach for the modelling of a mechanical rotary drilling system with friction. Evolution Equations & Control Theory, 2020, 9 (4) : 915-934. doi: 10.3934/eect.2020042

[16]

Boris P. Belinskiy, Peter Caithamer. Energy of an elastic mechanical system driven by Gaussian noise white in time. Conference Publications, 2001, 2001 (Special) : 39-49. doi: 10.3934/proc.2001.2001.39

[17]

Jong-Shenq Guo, Bo-Chih Huang. Hyperbolic quenching problem with damping in the micro-electro mechanical system device. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 419-434. doi: 10.3934/dcdsb.2014.19.419

[18]

Boris P. Belinskiy, Peter Caithamer. Stochastic stability of some mechanical systems with a multiplicative white noise. Conference Publications, 2003, 2003 (Special) : 91-99. doi: 10.3934/proc.2003.2003.91

[19]

Vadim Azhmyakov. An approach to controlled mechanical systems based on the multiobjective optimization technique. Journal of Industrial & Management Optimization, 2008, 4 (4) : 697-712. doi: 10.3934/jimo.2008.4.697

[20]

Anthony M. Bloch, Rohit Gupta, Ilya V. Kolmanovsky. Neighboring extremal optimal control for mechanical systems on Riemannian manifolds. Journal of Geometric Mechanics, 2016, 8 (3) : 257-272. doi: 10.3934/jgm.2016007

2020 Impact Factor: 0.857

Article outline

[Back to Top]