A theory of local convexity for a second order differential equation (${\text{sode}}$) on a Lie algebroid is developed. The particular case when the ${\text{sode}}$ is homogeneous quadratic is extensively discussed.
| Citation: |
| [1] |
A. Anahory Simoes, J. C. Marrero and D. Martín de Diego, Exact discrete Lagrangian mechanics for nonholonomic mechanics, preprint, arXiv: 2003.11362, 2020.
|
| [2] |
J. Cortés, M. de León, J. C. Marrero, D. Martín de Diego and E. Martínez, A survey of Lagrangian mechanics and control on Lie algebroids and groupoids, Int. J. Geom. Methods Mod. Phys., 3 (2006), 509-558.
doi: 10.1142/S0219887806001211.
|
| [3] |
J. Cortés, M. de León, J. C. Marrero and E. Martínez, Nonholonomic Lagrangian systems on Lie algebroids, Discrete and Contin. Dyn. Syst., 24 (2009), 213-271.
doi: 10.3934/dcds.2009.24.213.
|
| [4] |
M. Crainic and R. L. Fernandes, Integrability of Lie brackets, Ann. of Math., 157 (2003), 575-620.
doi: 10.4007/annals.2003.157.575.
|
| [5] |
M. de León, J. C. Marrero and E. Martínez, Lagrangian submanifolds and dynamics on Lie algebroids, J. Phys. A: Math. Gen., 38 (2005), R241–R308.
doi: 10.1088/0305-4470/38/24/R01.
|
| [6] |
M. de León and P. R. Rodrigues, Methods of Differential Geometry in Analytical Mechanics, North-Holland Mathematics Studies, Vol. 158. North-Holland Publishing Co., Amsterdam, 1989.
|
| [7] |
J. Grabowski, M. de León, J. C. Marrero and D. Martín de Diego, Nonholonomic constraints: A new viewpoint, J. Math. Phys., 50 (2009), 013520.
doi: 10.1063/1.3049752.
|
| [8] |
P. Hartman, Ordinary Differential Equations, Classics in Applied Mathematics, Vol. 38. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002.
doi: 10.1137/1.9780898719222.
|
| [9] |
K. Mackenzie, General Theory of Lie Groupoids and Lie Algebroids, London Mathematical
Society Lecture Note Series Vol. 213, Cambridge University Press, 2005.
doi: 10.1017/CBO9781107325883.
|
| [10] |
J. C. Marrero, D. Martín de Diego and E. Martínez, Discrete lagrangian and hamiltonian mechanics on Lie groupoids, Nonlinearity, 19 (2006), 3003-3004.
doi: 10.1088/0951-7715/19/12/C01.
|
| [11] |
J. C. Marrero, D. Martín de Diego and E. Martínez, The local description of discrete mechanics, Geometry, Mechanics, and Dynamics, Fields Inst. Commun., Springer, New York, 73 (2015), 285–317.
doi: 10.1007/978-1-4939-2441-7_13.
|
| [12] |
J. C. Marrero, D. Martín de Diego and E. Martínez, On the exact discrete Lagrangian function for variational integrators: theory and applications, preprint, arXiv: 1608.01586, 2016.
|
| [13] |
J. C. Marrero, D. Martín de Diego and E. Martínez, Variational integrators and error analysis for reduced mechanical Lagrangian systems, Work in progress, 2021
|
| [14] |
J. E. Marsden and M. West, Discrete mechanics and variational integrators, Acta Numer., 10 (2001), 357-514.
doi: 10.1017/S096249290100006X.
|
| [15] |
E. Martínez, Lagrangian mechanics on Lie algebroids, Acta Appl. Math., 67 (2001), 295-320.
doi: 10.1023/A:1011965919259.
|
| [16] |
E. Martínez, Variational calculus on Lie algebroids, ESAIM Control Optim. Calc. Var., 14 (2008), 356-380.
doi: 10.1051/cocv:2007056.
|
| [17] |
J. Moser and A. P. Veselov, Discrete versions of some classical integrable systems and factorization of matrix polynomials, Comm. Math. Phys., 139 (1991), 217-243.
doi: 10.1007/BF02352494.
|
| [18] |
G. W. Patrick and C. Cuell, Error analysis variational integrators of unconstrained Lagrangian systems, Numer. Math., 113 (2009), 243-264.
doi: 10.1007/s00211-009-0245-3.
|
| [19] |
A. Weinstein, Lagrangian Mechanics and groupoids, Fields Inst. Comm., Amer. Math. Soc., Providence, RI,, 7 (1996), 207-231.
|