doi: 10.3934/jgm.2021021
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Local convexity for second order differential equations on a Lie algebroid

1. 

ULL-CSIC Geometría Diferencial y Mecánica Geométrica, Departamento de Matemáticas, Estadística e IO, Sección de Matemáticas y Física, Universidad de la Laguna, La Laguna, Tenerife, Canary Islands, Spain

2. 

Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM), C/Nicolás Cabrera 13-15, 28049 Madrid, Spain

3. 

Departamento de Matemática Aplicada e IUMA, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain

Dedicated to the memory of K Mackenzie

Received  March 2021 Early access August 2021

A theory of local convexity for a second order differential equation (${\text{sode}}$) on a Lie algebroid is developed. The particular case when the ${\text{sode}}$ is homogeneous quadratic is extensively discussed.

Citation: Juan Carlos Marrero, David Martín de Diego, Eduardo Martínez. Local convexity for second order differential equations on a Lie algebroid. Journal of Geometric Mechanics, doi: 10.3934/jgm.2021021
References:
[1]

A. Anahory Simoes, J. C. Marrero and D. Martín de Diego, Exact discrete Lagrangian mechanics for nonholonomic mechanics, preprint, arXiv: 2003.11362, 2020. Google Scholar

[2]

J. CortésM. de LeónJ. C. MarreroD. Martín de Diego and E. Martínez, A survey of Lagrangian mechanics and control on Lie algebroids and groupoids, Int. J. Geom. Methods Mod. Phys., 3 (2006), 509-558.  doi: 10.1142/S0219887806001211.  Google Scholar

[3]

J. CortésM. de LeónJ. C. Marrero and E. Martínez, Nonholonomic Lagrangian systems on Lie algebroids, Discrete and Contin. Dyn. Syst., 24 (2009), 213-271.  doi: 10.3934/dcds.2009.24.213.  Google Scholar

[4]

M. Crainic and R. L. Fernandes, Integrability of Lie brackets, Ann. of Math., 157 (2003), 575-620.  doi: 10.4007/annals.2003.157.575.  Google Scholar

[5]

M. de León, J. C. Marrero and E. Martínez, Lagrangian submanifolds and dynamics on Lie algebroids, J. Phys. A: Math. Gen., 38 (2005), R241–R308. doi: 10.1088/0305-4470/38/24/R01.  Google Scholar

[6]

M. de León and P. R. Rodrigues, Methods of Differential Geometry in Analytical Mechanics, North-Holland Mathematics Studies, Vol. 158. North-Holland Publishing Co., Amsterdam, 1989.  Google Scholar

[7]

J. Grabowski, M. de León, J. C. Marrero and D. Martín de Diego, Nonholonomic constraints: A new viewpoint, J. Math. Phys., 50 (2009), 013520. doi: 10.1063/1.3049752.  Google Scholar

[8]

P. Hartman, Ordinary Differential Equations, Classics in Applied Mathematics, Vol. 38. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002. doi: 10.1137/1.9780898719222.  Google Scholar

[9]

K. Mackenzie, General Theory of Lie Groupoids and Lie Algebroids, London Mathematical Society Lecture Note Series Vol. 213, Cambridge University Press, 2005. doi: 10.1017/CBO9781107325883.  Google Scholar

[10]

J. C. MarreroD. Martín de Diego and E. Martínez, Discrete lagrangian and hamiltonian mechanics on Lie groupoids, Nonlinearity, 19 (2006), 3003-3004.  doi: 10.1088/0951-7715/19/12/C01.  Google Scholar

[11]

J. C. Marrero, D. Martín de Diego and E. Martínez, The local description of discrete mechanics, Geometry, Mechanics, and Dynamics, Fields Inst. Commun., Springer, New York, 73 (2015), 285–317. doi: 10.1007/978-1-4939-2441-7_13.  Google Scholar

[12]

J. C. Marrero, D. Martín de Diego and E. Martínez, On the exact discrete Lagrangian function for variational integrators: theory and applications, preprint, arXiv: 1608.01586, 2016. Google Scholar

[13]

J. C. Marrero, D. Martín de Diego and E. Martínez, Variational integrators and error analysis for reduced mechanical Lagrangian systems, Work in progress, 2021 Google Scholar

[14]

J. E. Marsden and M. West, Discrete mechanics and variational integrators, Acta Numer., 10 (2001), 357-514.  doi: 10.1017/S096249290100006X.  Google Scholar

[15]

E. Martínez, Lagrangian mechanics on Lie algebroids, Acta Appl. Math., 67 (2001), 295-320.  doi: 10.1023/A:1011965919259.  Google Scholar

[16]

E. Martínez, Variational calculus on Lie algebroids, ESAIM Control Optim. Calc. Var., 14 (2008), 356-380.  doi: 10.1051/cocv:2007056.  Google Scholar

[17]

J. Moser and A. P. Veselov, Discrete versions of some classical integrable systems and factorization of matrix polynomials, Comm. Math. Phys., 139 (1991), 217-243.  doi: 10.1007/BF02352494.  Google Scholar

[18]

G. W. Patrick and C. Cuell, Error analysis variational integrators of unconstrained Lagrangian systems, Numer. Math., 113 (2009), 243-264.  doi: 10.1007/s00211-009-0245-3.  Google Scholar

[19]

A. Weinstein, Lagrangian Mechanics and groupoids, Fields Inst. Comm., Amer. Math. Soc., Providence, RI,, 7 (1996), 207-231.  Google Scholar

show all references

References:
[1]

A. Anahory Simoes, J. C. Marrero and D. Martín de Diego, Exact discrete Lagrangian mechanics for nonholonomic mechanics, preprint, arXiv: 2003.11362, 2020. Google Scholar

[2]

J. CortésM. de LeónJ. C. MarreroD. Martín de Diego and E. Martínez, A survey of Lagrangian mechanics and control on Lie algebroids and groupoids, Int. J. Geom. Methods Mod. Phys., 3 (2006), 509-558.  doi: 10.1142/S0219887806001211.  Google Scholar

[3]

J. CortésM. de LeónJ. C. Marrero and E. Martínez, Nonholonomic Lagrangian systems on Lie algebroids, Discrete and Contin. Dyn. Syst., 24 (2009), 213-271.  doi: 10.3934/dcds.2009.24.213.  Google Scholar

[4]

M. Crainic and R. L. Fernandes, Integrability of Lie brackets, Ann. of Math., 157 (2003), 575-620.  doi: 10.4007/annals.2003.157.575.  Google Scholar

[5]

M. de León, J. C. Marrero and E. Martínez, Lagrangian submanifolds and dynamics on Lie algebroids, J. Phys. A: Math. Gen., 38 (2005), R241–R308. doi: 10.1088/0305-4470/38/24/R01.  Google Scholar

[6]

M. de León and P. R. Rodrigues, Methods of Differential Geometry in Analytical Mechanics, North-Holland Mathematics Studies, Vol. 158. North-Holland Publishing Co., Amsterdam, 1989.  Google Scholar

[7]

J. Grabowski, M. de León, J. C. Marrero and D. Martín de Diego, Nonholonomic constraints: A new viewpoint, J. Math. Phys., 50 (2009), 013520. doi: 10.1063/1.3049752.  Google Scholar

[8]

P. Hartman, Ordinary Differential Equations, Classics in Applied Mathematics, Vol. 38. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002. doi: 10.1137/1.9780898719222.  Google Scholar

[9]

K. Mackenzie, General Theory of Lie Groupoids and Lie Algebroids, London Mathematical Society Lecture Note Series Vol. 213, Cambridge University Press, 2005. doi: 10.1017/CBO9781107325883.  Google Scholar

[10]

J. C. MarreroD. Martín de Diego and E. Martínez, Discrete lagrangian and hamiltonian mechanics on Lie groupoids, Nonlinearity, 19 (2006), 3003-3004.  doi: 10.1088/0951-7715/19/12/C01.  Google Scholar

[11]

J. C. Marrero, D. Martín de Diego and E. Martínez, The local description of discrete mechanics, Geometry, Mechanics, and Dynamics, Fields Inst. Commun., Springer, New York, 73 (2015), 285–317. doi: 10.1007/978-1-4939-2441-7_13.  Google Scholar

[12]

J. C. Marrero, D. Martín de Diego and E. Martínez, On the exact discrete Lagrangian function for variational integrators: theory and applications, preprint, arXiv: 1608.01586, 2016. Google Scholar

[13]

J. C. Marrero, D. Martín de Diego and E. Martínez, Variational integrators and error analysis for reduced mechanical Lagrangian systems, Work in progress, 2021 Google Scholar

[14]

J. E. Marsden and M. West, Discrete mechanics and variational integrators, Acta Numer., 10 (2001), 357-514.  doi: 10.1017/S096249290100006X.  Google Scholar

[15]

E. Martínez, Lagrangian mechanics on Lie algebroids, Acta Appl. Math., 67 (2001), 295-320.  doi: 10.1023/A:1011965919259.  Google Scholar

[16]

E. Martínez, Variational calculus on Lie algebroids, ESAIM Control Optim. Calc. Var., 14 (2008), 356-380.  doi: 10.1051/cocv:2007056.  Google Scholar

[17]

J. Moser and A. P. Veselov, Discrete versions of some classical integrable systems and factorization of matrix polynomials, Comm. Math. Phys., 139 (1991), 217-243.  doi: 10.1007/BF02352494.  Google Scholar

[18]

G. W. Patrick and C. Cuell, Error analysis variational integrators of unconstrained Lagrangian systems, Numer. Math., 113 (2009), 243-264.  doi: 10.1007/s00211-009-0245-3.  Google Scholar

[19]

A. Weinstein, Lagrangian Mechanics and groupoids, Fields Inst. Comm., Amer. Math. Soc., Providence, RI,, 7 (1996), 207-231.  Google Scholar

[1]

José F. Cariñena, Irina Gheorghiu, Eduardo Martínez. Jacobi fields for second-order differential equations on Lie algebroids. Conference Publications, 2015, 2015 (special) : 213-222. doi: 10.3934/proc.2015.0213

[2]

Leonardo Colombo, David Martín de Diego. Second-order variational problems on Lie groupoids and optimal control applications. Discrete & Continuous Dynamical Systems, 2016, 36 (11) : 6023-6064. doi: 10.3934/dcds.2016064

[3]

David Blázquez-Sanz, Juan J. Morales-Ruiz. Lie's reduction method and differential Galois theory in the complex analytic context. Discrete & Continuous Dynamical Systems, 2012, 32 (2) : 353-379. doi: 10.3934/dcds.2012.32.353

[4]

Leonardo Colombo. Second-order constrained variational problems on Lie algebroids: Applications to Optimal Control. Journal of Geometric Mechanics, 2017, 9 (1) : 1-45. doi: 10.3934/jgm.2017001

[5]

Qiong Meng, X. H. Tang. Multiple solutions of second-order ordinary differential equation via Morse theory. Communications on Pure & Applied Analysis, 2012, 11 (3) : 945-958. doi: 10.3934/cpaa.2012.11.945

[6]

Velimir Jurdjevic. Affine-quadratic problems on Lie groups. Mathematical Control & Related Fields, 2013, 3 (3) : 347-374. doi: 10.3934/mcrf.2013.3.347

[7]

Eduardo Martínez. Classical field theory on Lie algebroids: Multisymplectic formalism. Journal of Geometric Mechanics, 2018, 10 (1) : 93-138. doi: 10.3934/jgm.2018004

[8]

Nguyen Thi Hoai. Asymptotic approximation to a solution of a singularly perturbed linear-quadratic optimal control problem with second-order linear ordinary differential equation of state variable. Numerical Algebra, Control & Optimization, 2021, 11 (4) : 495-512. doi: 10.3934/naco.2020040

[9]

Eduardo Martínez. Higher-order variational calculus on Lie algebroids. Journal of Geometric Mechanics, 2015, 7 (1) : 81-108. doi: 10.3934/jgm.2015.7.81

[10]

M. P. de Oliveira. On 3-graded Lie algebras, Jordan pairs and the canonical kernel function. Electronic Research Announcements, 2003, 9: 142-151.

[11]

Melvin Leok, Diana Sosa. Dirac structures and Hamilton-Jacobi theory for Lagrangian mechanics on Lie algebroids. Journal of Geometric Mechanics, 2012, 4 (4) : 421-442. doi: 10.3934/jgm.2012.4.421

[12]

Yuri V. Rogovchenko, Fatoş Tuncay. Interval oscillation of a second order nonlinear differential equation with a damping term. Conference Publications, 2007, 2007 (Special) : 883-891. doi: 10.3934/proc.2007.2007.883

[13]

Ruy Coimbra Charão, Juan Torres Espinoza, Ryo Ikehata. A second order fractional differential equation under effects of a super damping. Communications on Pure & Applied Analysis, 2020, 19 (9) : 4433-4454. doi: 10.3934/cpaa.2020202

[14]

Leonardo Colombo, David Martín de Diego. Higher-order variational problems on lie groups and optimal control applications. Journal of Geometric Mechanics, 2014, 6 (4) : 451-478. doi: 10.3934/jgm.2014.6.451

[15]

Chaudry Masood Khalique, Muhammad Usman, Maria Luz Gandarais. Nonlinear differential equations: Lie symmetries, conservation laws and other approaches of solving. Discrete & Continuous Dynamical Systems - S, 2020, 13 (10) : i-ii. doi: 10.3934/dcdss.2020415

[16]

Fernando Casas, Cristina Chiralt. A Lie--Deprit perturbation algorithm for linear differential equations with periodic coefficients. Discrete & Continuous Dynamical Systems, 2014, 34 (3) : 959-975. doi: 10.3934/dcds.2014.34.959

[17]

Isaac A. García, Jaume Giné, Jaume Llibre. Liénard and Riccati differential equations related via Lie Algebras. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 485-494. doi: 10.3934/dcdsb.2008.10.485

[18]

Xin Chen, Ana Bela Cruzeiro. Stochastic geodesics and forward-backward stochastic differential equations on Lie groups. Conference Publications, 2013, 2013 (special) : 115-121. doi: 10.3934/proc.2013.2013.115

[19]

Kyeong-Hun Kim, Kijung Lee. A weighted $L_p$-theory for second-order parabolic and elliptic partial differential systems on a half space. Communications on Pure & Applied Analysis, 2016, 15 (3) : 761-794. doi: 10.3934/cpaa.2016.15.761

[20]

Wenying Feng, Guang Zhang, Yikang Chai. Existence of positive solutions for second order differential equations arising from chemical reactor theory. Conference Publications, 2007, 2007 (Special) : 373-381. doi: 10.3934/proc.2007.2007.373

2020 Impact Factor: 0.857

Metrics

  • PDF downloads (15)
  • HTML views (54)
  • Cited by (0)

[Back to Top]