
-
Previous Article
Dimension reduction in recurrent networks by canonicalization
- JGM Home
- This Issue
-
Next Article
On computational Poisson geometry I: Symbolic foundations
Explicit solutions of the kinetic and potential matching conditions of the energy shaping method
1. | Centro Atómico Bariloche and Instituto Balseiro, 8400 S.C. de Bariloche, and CONICET, Argentina |
2. | CMaLP, Facultad de Ciencias Exactas, UNLP, 1900 La Plata, and CONICET, Argentina |
3. | CMaLP, Facultad de Ciencias Exactas, UNLP, 1900 La Plata, Argentina |
In the context of underactuated Hamiltonian systems defined by simple Hamiltonian functions, the matching conditions of the energy shaping method split into two decoupled subsets of equations: the kinetic and potential equations. The unknown of the kinetic equation is a metric on the configuration space of the system, while the unknown of the potential equation are the same metric and a positive-definite function around some critical point of the Hamiltonian function. In this paper, assuming that a solution of the kinetic equation is given, we find conditions (in the $ C^{\infty} $ category) for the existence of positive-definite solutions of the potential equation and, moreover, we present a procedure to construct, up to quadratures, some of these solutions. In order to illustrate such a procedure, we consider the subclass of systems with one degree of underactuation, where we find in addition a concrete formula for the general solution of the kinetic equation. As a byproduct, new global and local expressions of the matching conditions are presented in the paper.
References:
[1] |
R. Abraham and J. E. Marsden, Foundation of Mechanics, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978. |
[2] |
V. I. Arnol'd, Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics, 60, Springer-Verlag, New York-Heidelberg, 1978.
doi: 10.1007/978-1-4757-1693-1. |
[3] |
A. M. Bloch, Nonholonomic Mechanics and Control, Interdisciplinary Applied Mathematics, 24, Systems and Control, Springer-Verlag, New York, 2003.
doi: 10.1007/b97376. |
[4] |
W. M. Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry, Pure and Applied Mathematics, 63, Academic Press, New York-London, 1975.
![]() ![]() |
[5] |
F. Bullo and A. D. Lewis, Geometric Control of Mechanical Systems. Modeling, Analysis, and Design for Simple Mechanical Control Systems, Texts in Applied Mathematics, 49, Springer-Verlag, New York, 2005.
doi: 10.1007/978-1-4899-7276-7. |
[6] |
D. E. Chang, Generalization of the IDA-PBC method for stabilization of mechanical systems, 18th Mediterranean Conference on Control and Automation, MED'10, Marrakech, Morocco, 2010.
doi: 10.1109/MED.2010.5547672. |
[7] |
D. E. Chang,
The method of controlled Lagrangians: Energy plus force shaping, SIAM J. Control Optim., 48 (2010), 4821-4845.
doi: 10.1137/070691310. |
[8] |
D. E. Chang,
On the method of interconnection and damping assignment passivity-based control for the stabilization of mechanical systems, Regul. Chaotic Dyn., 19 (2014), 556-575.
doi: 10.1134/S1560354714050049. |
[9] |
D. E. Chang,
Stabilizability of controlled Lagrangian systems of two degrees of freedom and one degree of under-actuation by the energy-shaping method, IEEE Trans. Automat. Control, 55 (2010), 1888-1893.
doi: 10.1109/TAC.2010.2049279. |
[10] |
D. E. Chang, A. M. Bloch, N. E. Leonard, J. E. Marsden and C. A. Wollsey,
The equivalence of controlled Lagrangian and controlled Hamiltonian systems, ESAIM Control Optim. Calc. Var., 8 (2002), 393-422.
doi: 10.1051/cocv:2002045. |
[11] |
B. Gharesifard,
Stabilization of systems with one degree of underactuation with energy shaping: A geometric approach, SIAM J. Control Optim., 49 (2011), 1422-1434.
doi: 10.1137/09076698X. |
[12] |
H. Goldschmidt,
Existence theorems for analytic linear partial differential equations, Ann. of Math. (2), 86 (1967), 246-270.
doi: 10.2307/1970689. |
[13] |
S. D. Grillo, L. M. Salomone and M. Zuccalli,
Asymptotic stabilizability of underactuated Hamiltonian systems with two degrees of freedom, Russ. J. Nonlinear Dyn., 15 (2019), 309-326.
doi: 10.20537/nd190309. |
[14] |
S. D. Grillo, L. M. Salomone and M. Zuccalli,
On the relationship between the energy shaping and the Lyapunov constraint based methods, J. Geom. Mech., 9 (2017), 459-486.
doi: 10.3934/jgm.2017018. |
[15] |
J. Hamberg,
Controlled Lagrangians, symmetries and conditions for strong matching, IFAC Proceedings Volumes, 33 (2000), 57-62.
doi: 10.1016/S1474-6670(17)35547-7. |
[16] |
J. Hamberg, General matching conditions in the theory of controlled Lagrangians, Proceedings of the 38th IEEE Conference on Decision and Control, Phoenix, AZ, 1999.
doi: 10.1109/CDC.1999.831306. |
[17] |
S. Kobayashi and K. Nomizu, Foundations of Differential Geometry. Vol I, Interscience Publishers, a division of John Wiley & Sons, New York-London, 1963. |
[18] |
A. D. Lewis, Potential energy shaping after kinetic energy shaping, Proceedings of the 45th IEEE Conference on Decision and Control, San Diego, CA, 2006.
doi: 10.1109/CDC.2006.376885. |
[19] |
J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry. A Basic Exposition of Classical Mechanical Systems, 2nd edition, Texts in Applied Mathematics, 17, Springer-Verlag, New York, 1999.
doi: 10.1007/978-0-387-21792-5. |
[20] |
J. E. Marsden and T. S. Ratiu, Manifolds, Tensor Analysis and Applications, Springer-Verlag, New York, 2001. |
[21] |
J. G. Romero, A. Donaire and R. Ortega,
Robust energy shaping control of mechanical systems, Systems Control Lett., 62 (2013), 770-780.
doi: 10.1016/j.sysconle.2013.05.011. |
[22] |
D. Zenkov, Matching and stabilization of linear mechanical systems, Proceedings of 2002 International Symposium of Mathematical Theory of Networks and Systems, South Bend, IN, 2002. Available from: http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=F5FAA6E2AB4998A2C00B8A5CDB0A461C?doi=10.1.1.12.7462&rep=rep1&type=pdf. |
show all references
References:
[1] |
R. Abraham and J. E. Marsden, Foundation of Mechanics, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978. |
[2] |
V. I. Arnol'd, Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics, 60, Springer-Verlag, New York-Heidelberg, 1978.
doi: 10.1007/978-1-4757-1693-1. |
[3] |
A. M. Bloch, Nonholonomic Mechanics and Control, Interdisciplinary Applied Mathematics, 24, Systems and Control, Springer-Verlag, New York, 2003.
doi: 10.1007/b97376. |
[4] |
W. M. Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry, Pure and Applied Mathematics, 63, Academic Press, New York-London, 1975.
![]() ![]() |
[5] |
F. Bullo and A. D. Lewis, Geometric Control of Mechanical Systems. Modeling, Analysis, and Design for Simple Mechanical Control Systems, Texts in Applied Mathematics, 49, Springer-Verlag, New York, 2005.
doi: 10.1007/978-1-4899-7276-7. |
[6] |
D. E. Chang, Generalization of the IDA-PBC method for stabilization of mechanical systems, 18th Mediterranean Conference on Control and Automation, MED'10, Marrakech, Morocco, 2010.
doi: 10.1109/MED.2010.5547672. |
[7] |
D. E. Chang,
The method of controlled Lagrangians: Energy plus force shaping, SIAM J. Control Optim., 48 (2010), 4821-4845.
doi: 10.1137/070691310. |
[8] |
D. E. Chang,
On the method of interconnection and damping assignment passivity-based control for the stabilization of mechanical systems, Regul. Chaotic Dyn., 19 (2014), 556-575.
doi: 10.1134/S1560354714050049. |
[9] |
D. E. Chang,
Stabilizability of controlled Lagrangian systems of two degrees of freedom and one degree of under-actuation by the energy-shaping method, IEEE Trans. Automat. Control, 55 (2010), 1888-1893.
doi: 10.1109/TAC.2010.2049279. |
[10] |
D. E. Chang, A. M. Bloch, N. E. Leonard, J. E. Marsden and C. A. Wollsey,
The equivalence of controlled Lagrangian and controlled Hamiltonian systems, ESAIM Control Optim. Calc. Var., 8 (2002), 393-422.
doi: 10.1051/cocv:2002045. |
[11] |
B. Gharesifard,
Stabilization of systems with one degree of underactuation with energy shaping: A geometric approach, SIAM J. Control Optim., 49 (2011), 1422-1434.
doi: 10.1137/09076698X. |
[12] |
H. Goldschmidt,
Existence theorems for analytic linear partial differential equations, Ann. of Math. (2), 86 (1967), 246-270.
doi: 10.2307/1970689. |
[13] |
S. D. Grillo, L. M. Salomone and M. Zuccalli,
Asymptotic stabilizability of underactuated Hamiltonian systems with two degrees of freedom, Russ. J. Nonlinear Dyn., 15 (2019), 309-326.
doi: 10.20537/nd190309. |
[14] |
S. D. Grillo, L. M. Salomone and M. Zuccalli,
On the relationship between the energy shaping and the Lyapunov constraint based methods, J. Geom. Mech., 9 (2017), 459-486.
doi: 10.3934/jgm.2017018. |
[15] |
J. Hamberg,
Controlled Lagrangians, symmetries and conditions for strong matching, IFAC Proceedings Volumes, 33 (2000), 57-62.
doi: 10.1016/S1474-6670(17)35547-7. |
[16] |
J. Hamberg, General matching conditions in the theory of controlled Lagrangians, Proceedings of the 38th IEEE Conference on Decision and Control, Phoenix, AZ, 1999.
doi: 10.1109/CDC.1999.831306. |
[17] |
S. Kobayashi and K. Nomizu, Foundations of Differential Geometry. Vol I, Interscience Publishers, a division of John Wiley & Sons, New York-London, 1963. |
[18] |
A. D. Lewis, Potential energy shaping after kinetic energy shaping, Proceedings of the 45th IEEE Conference on Decision and Control, San Diego, CA, 2006.
doi: 10.1109/CDC.2006.376885. |
[19] |
J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry. A Basic Exposition of Classical Mechanical Systems, 2nd edition, Texts in Applied Mathematics, 17, Springer-Verlag, New York, 1999.
doi: 10.1007/978-0-387-21792-5. |
[20] |
J. E. Marsden and T. S. Ratiu, Manifolds, Tensor Analysis and Applications, Springer-Verlag, New York, 2001. |
[21] |
J. G. Romero, A. Donaire and R. Ortega,
Robust energy shaping control of mechanical systems, Systems Control Lett., 62 (2013), 770-780.
doi: 10.1016/j.sysconle.2013.05.011. |
[22] |
D. Zenkov, Matching and stabilization of linear mechanical systems, Proceedings of 2002 International Symposium of Mathematical Theory of Networks and Systems, South Bend, IN, 2002. Available from: http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=F5FAA6E2AB4998A2C00B8A5CDB0A461C?doi=10.1.1.12.7462&rep=rep1&type=pdf. |

[1] |
Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030 |
[2] |
Morched Boughariou. Closed orbits of Hamiltonian systems on non-compact prescribed energy surfaces. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 603-616. doi: 10.3934/dcds.2003.9.603 |
[3] |
Leonardo Colombo, David Martín de Diego. Optimal control of underactuated mechanical systems with symmetries. Conference Publications, 2013, 2013 (special) : 149-158. doi: 10.3934/proc.2013.2013.149 |
[4] |
Sonia Martínez, Jorge Cortés, Francesco Bullo. A catalog of inverse-kinematics planners for underactuated systems on matrix groups. Journal of Geometric Mechanics, 2009, 1 (4) : 445-460. doi: 10.3934/jgm.2009.1.445 |
[5] |
Mitsuru Shibayama. Periodic solutions for a prescribed-energy problem of singular Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2705-2715. doi: 10.3934/dcds.2017116 |
[6] |
Liang Ding, Rongrong Tian, Jinlong Wei. Nonconstant periodic solutions with any fixed energy for singular Hamiltonian systems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1617-1625. doi: 10.3934/dcdsb.2018222 |
[7] |
Jochen Schmid. Stabilization of port-Hamiltonian systems with discontinuous energy densities. Evolution Equations and Control Theory, 2022 doi: 10.3934/eect.2021063 |
[8] |
Justine Yasappan, Ángela Jiménez-Casas, Mario Castro. Stabilizing interplay between thermodiffusion and viscoelasticity in a closed-loop thermosyphon. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 3267-3299. doi: 10.3934/dcdsb.2015.20.3267 |
[9] |
Kenneth R. Meyer, Jesús F. Palacián, Patricia Yanguas. Normally stable hamiltonian systems. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1201-1214. doi: 10.3934/dcds.2013.33.1201 |
[10] |
Antonio Giorgilli. Unstable equilibria of Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 855-871. doi: 10.3934/dcds.2001.7.855 |
[11] |
Edward Hooton, Pavel Kravetc, Dmitrii Rachinskii, Qingwen Hu. Selective Pyragas control of Hamiltonian systems. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 2019-2034. doi: 10.3934/dcdss.2019130 |
[12] |
Wei Wang. Closed trajectories on symmetric convex Hamiltonian energy surfaces. Discrete and Continuous Dynamical Systems, 2012, 32 (2) : 679-701. doi: 10.3934/dcds.2012.32.679 |
[13] |
Xiaochen Sun, Fei Hu, Yancong Zhou, Cheng-Chew Lim. Optimal acquisition, inventory and production decisions for a closed-loop manufacturing system with legislation constraint. Journal of Industrial and Management Optimization, 2015, 11 (4) : 1355-1373. doi: 10.3934/jimo.2015.11.1355 |
[14] |
Yi Jing, Wenchuan Li. Integrated recycling-integrated production - distribution planning for decentralized closed-loop supply chain. Journal of Industrial and Management Optimization, 2018, 14 (2) : 511-539. doi: 10.3934/jimo.2017058 |
[15] |
Hanxiao Wang, Jingrui Sun, Jiongmin Yong. Weak closed-loop solvability of stochastic linear-quadratic optimal control problems. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2785-2805. doi: 10.3934/dcds.2019117 |
[16] |
Pasquale Palumbo, Pierdomenico Pepe, Simona Panunzi, Andrea De Gaetano. Robust closed-loop control of plasma glycemia: A discrete-delay model approach. Discrete and Continuous Dynamical Systems - B, 2009, 12 (2) : 455-468. doi: 10.3934/dcdsb.2009.12.455 |
[17] |
Wenbin Wang, Peng Zhang, Junfei Ding, Jian Li, Hao Sun, Lingyun He. Closed-loop supply chain network equilibrium model with retailer-collection under legislation. Journal of Industrial and Management Optimization, 2019, 15 (1) : 199-219. doi: 10.3934/jimo.2018039 |
[18] |
Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control and Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023 |
[19] |
Filippo Cacace, Valerio Cusimano, Alfredo Germani, Pasquale Palumbo, Federico Papa. Closed-loop control of tumor growth by means of anti-angiogenic administration. Mathematical Biosciences & Engineering, 2018, 15 (4) : 827-839. doi: 10.3934/mbe.2018037 |
[20] |
Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control and Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026 |
2020 Impact Factor: 0.857
Tools
Metrics
Other articles
by authors
[Back to Top]