[1]
|
K. S. Anderson and Y. Hsu, Analytical fully-recursive sensitivity analysis for multibody dynamic chain systems, Multibody Syst. Dyn., 8 (2002), 1-27.
doi: 10.1023/A:1015867515213.
|
[2]
|
M. H. Ang and V. D. Tourassis, Singularities of Euler and roll-pitch-yaw representations, IEEE Transactions on Aerospace and Electronic Systems, 23 (1987), 317-324.
doi: 10.1109/TAES.1987.310828.
|
[3]
|
K. Ayusawa, G. Venture and Y. Nakamura, Identification of humanoid robots dynamics using floating-base motion dynamics, IEEE/RSJ International Conference on Intelligent Robots and Systems, (2008), 2854–2859.
doi: 10.1109/IROS.2008.4650614.
|
[4]
|
A. Barrau and S. Bonnabel, Intrinsic filtering on lie groups with applications to attitude estimation, IEEE Trans. Automat. Control, 60 (2015), 436-449.
doi: 10.1109/TAC.2014.2342911.
|
[5]
|
M. P. Bos, Efficient geometric sensitivity analysis of moving-base multibody dynamics, Master's Thesis, Eindhoven University of Technology, 2019.
|
[6]
|
O. Brüls and P. Eberhard, Sensitivity analysis for dynamic mechanical systems with finite rotations, Int. J. Numer. Methods Eng., 74 (2008), 1897-1927.
doi: 10.1002/nme.2232.
|
[7]
|
J. Carpentier, Analytical inverse of the joint space inertia matrix, Available Online at Hal. Laas. Fr, 2018.
|
[8]
|
J. Carpentier and N. Mansard, Analytical derivatives of rigid body dynamics algorithms, Robotics: Science and Systems (RSS), 2018.
doi: 10.15607/RSS.2018.XIV.038.
|
[9]
|
J. Deray and J. Solà, Manif: A micro lie theory library for state estimation in robotics applications, J. Open Source Software, 5 (2020), 1371.
doi: 10.21105/joss.01371.
|
[10]
|
J. Diebel, Representing attitude: Euler angles, unit quaternions, and rotation vectors, Matrix, 58 (2006), 1-35.
|
[11]
|
Q. Docquier, O. Brüls and P. Fisette, Comparison and analysis of multibody dynamics formalisms for solving optimal control problem, IUTAM Symposium on Intelligent Multibody Systems - Dynamics, Control, Simulation, 33 (2019), 55-77.
doi: 10.1007/978-3-030-00527-6_3.
|
[12]
|
T. Fan and T. Murphey, Structured linearization of discrete mechanical systems on lie groups: A synthesis of analysis and control, In 2015 54th IEEE Conference on Decision and Control (CDC), (2015), 1092–1099.
doi: 10.1109/CDC.2015.7402357.
|
[13]
|
F. Farshidian, E. Jelavic, A. Satapathy, M. Giftthaler and J. Buchli, Real-time motion planning of legged robots: A model predictive control approach, IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids), (2017), 577–584.
doi: 10.1109/HUMANOIDS.2017.8246930.
|
[14]
|
R. Featherstone, Rigid Body Dynamics Algorithms, Springer, 2008.
|
[15]
|
P. J. From, V. Duindam, K. Y. Pettersen, J. T. Gravdahl and S. Sastry, Singularity-free dynamic equations of vehicle–manipulator systems, Simulation Modelling Practice and Theory, 18 (2010), 712-731.
|
[16]
|
G. Garofalo, C. Ott and A. Albu-Schäffer, On the closed form computation of the dynamic matrices and their differentiations, IEEE/RSJ International Conference on Intelligent Robots and Systems, (2013), 2364–2359.
doi: 10.1109/IROS.2013.6696688.
|
[17]
|
P. Geoffroy, N. Mansard, M. Raison, S. Achiche and E. Todorov, From inverse kinematics to optimal control, In Advances in Robot Kinematics, Springer, Cham, (2014), 409–418.
|
[18]
|
M. Giftthaler, M. Neunert, M. Stäuble, M. Frigerio, C. Semini and J. Buchli, Automatic differentiation of rigid body dynamics for optimal control and estimation, Advanced Robotics, 31 (2017), 1225-1237.
doi: 10.1080/01691864.2017.1395361.
|
[19]
|
H. K. Khalil, Nonlinear Systems, Prentice hall, 2002.
|
[20]
|
A. Kheddar, S. Caron, P. Gergondet, A. Comport, A. Tanguy, C. Ott, B. Henze, G. Mesesan, J. Englsberger, M. A. Roa, P. Wieber, F. Chaumette, F. Spindler, G. Oriolo, L. Lanari, A. Escande, K. Chappellet, F. Kanehiro and P. Rabaté, Humanoid robots in aircraft manufacturing: The airbus use cases., IEEE Robotics Automation Magazine, 26 (2019), 30-45.
|
[21]
|
J. Koenemann, A. Del Prete, Y. Tassa, E. Todorov, O. Stasse, M. Bennewitz and N. Mansard, Whole-body model-predictive control applied to the HRP-2 humanoid, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (2015), 3346–3351.
doi: 10.1109/IROS.2015.7353843.
|
[22]
|
J. M. Lee, Smooth manifolds, Introduction to Smooth Manifolds, 218 (2013), 1-31.
doi: 10.1007/978-1-4419-9982-5_1.
|
[23]
|
T. Lee, M. Leok and N. H. McClamroch, Computational geometric optimal control of rigid bodies, Commun. Inf. Syst., 8 (2008), 445-472.
doi: 10.4310/CIS.2008.v8.n4.a5.
|
[24]
|
T. Lee, M. Leok and N. H. McClamroch, Global Formulations of Lagrangian and Hamiltonian Dynamics on Embedded Manifolds, Springer, 2017.
doi: 10.1007/978-3-319-56953-6.
|
[25]
|
M. Leok, An overview of lie group variational integrators and their applications to optimal control, In International Conference on Scientific Computation and Differential Equations, The French National Institute for Research in Computer Science and Control, (2007), 1 pp.
|
[26]
|
J. Y. S. Luh, M. W. Walker and R. P. C. Paul, On-line computational scheme for mechanical manipulators, J. Dynam. Systems Measurement Control, 102 (1980), 69-76.
doi: 10.1115/1.3149599.
|
[27]
|
A. Marco, P. Hennig, J. Bohg, S. Schaal and S. Trimpe, Automatic LQR tuning based on Gaussian process global optimization, IEEE International Conference on Robotics and Automation (ICRA), 2016.
doi: 10.1109/ICRA.2016.7487144.
|
[28]
|
S. Mason, L. Righetti and S. Schaal, Full dynamics LQR control of a humanoid robot: An experimental study on balancing and squatting, IEEE-RAS International Conference on Humanoid Robots, (2014), 374–379.
doi: 10.1109/HUMANOIDS.2014.7041387.
|
[29]
|
R. M. Murray, A Mathematical Introduction to Robotic Manipulation, CRC press, 2017.
|
[30]
|
D. Negrut and J. Ortiz, A practical approach for the linearization of the constrained multibody dynamics equations, J. Comput. Nonlinear Dynam., 1 (2006), 230-239.
doi: 10.1115/1.2198876.
|
[31]
|
M. Neunert, M. Giftthaler, M. Frigerio, C. Semini and J. Buchli, Fast derivatives of rigid body dynamics for control, optimization and estimation, IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR), (2016), 91–97.
doi: 10.1109/SIMPAR.2016.7862380.
|
[32]
|
F. C. Park, B. Kim, C. Jang and J. Hong, Geometric algorithms for robot dynamics: A tutorial review, Appl. Mech. Rev., 70 (2018), 010803.
doi: 10.1115/1.4039078.
|
[33]
|
M. Posa, C. Cantu and R. Tedrake, A direct method for trajectory optimization of rigid bodies through contact, The International Journal of Robotics Research, 33 (2014), 69-81.
doi: 10.1177/0278364913506757.
|
[34]
|
D. Pucci, G. Nava and F. Nori, Automatic gain tuning of a momentum based balancing controller for humanoid robots, In 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), IEEE, (2016), 158–164.
doi: 10.1109/HUMANOIDS.2016.7803272.
|
[35]
|
D. Pucci, S. Traversaro and F. Nori, Momentum control of an underactuated flying humanoid robot, IEEE Robotics and Automation Letters, 3 (2018), 195-202.
doi: 10.1109/LRA.2017.2734245.
|
[36]
|
W. Rossmann, Lie Groups: An Introduction Through Linear Groups, volume 5., Oxford University Press, 2002.
|
[37]
|
A. Saccon, A. P. Aguiar and J. Hauser, Lie group projection operator approach: Optimal control on T SO (3), IEEE Decision and Control and European Control Conference (CDC-ECC), (2011), 6973–6978.
|
[38]
|
A. Saccon, J. Hauser and A. P. Aguiar, Optimal control on non-compact lie groups: A projection operator approach, In 49th IEEE Conference on Decision and Control (CDC), (2010), 7111–7116
|
[39]
|
A. Saccon, J. Hauser and A. P. Aguiar, Optimal control on Lie groups: The projection operator approach, IEEE Trans. Automat. Control, 58 (2013), 2230-2245.
doi: 10.1109/TAC.2013.2258817.
|
[40]
|
A. Saccon, J. Hauser and A. Beghi, Trajectory exploration of a rigid motorcycle model, IEEE Transactions on Control Systems Technology, 20 (2012), 424-437.
doi: 10.1109/TCST.2011.2116788.
|
[41]
|
A. Saccon, S. Traversaro, F. Nori and H. Nijmeijer, On centroidal dynamics and integrability of average angular velocity, IEEE Robotics and Automation Letter, 2 (2017), 943-950.
doi: 10.1109/LRA.2017.2655560.
|
[42]
|
A. K. Sanyal, T. Lee, M. Leok and N. H. McClamroch, Global optimal attitude estimation using uncertainty ellipsoids, Systems Control Lett., 57 (2008), 236-245.
doi: 10.1016/j.sysconle.2007.08.014.
|
[43]
|
G. A. Sohl and J. E. Bobrow, A recursive multibody dynamics and sensitivity algorithm for branched kinematic chains, J. Dynamic Systems, Measurement, and Control, 123 (2001), 391-399.
|
[44]
|
J. Solà, J. Deray and D. Atchuthan, A micro Lie theory for state estimation in robotics, arXiv preprint, arXiv: 1812.01537, 2018.
|
[45]
|
V. Sonneville and O. Brüls, Sensitivity analysis for multibody systems formulated on a Lie group, Multibody Syst. Dyn., 31 (2014), 47-67.
doi: 10.1007/s11044-013-9345-z.
|
[46]
|
Y. Tassa, T. Erez and E. Todorov, Synthesis and stabilization of complex behaviors through online trajectory optimization, IEEE/RSJ International Conference on Intelligent Robots and Systems, (2012), 4906–4913.
doi: 10.1109/IROS.2012.6386025.
|
[47]
|
S. Traversaro and A. Saccon, Multibody dynamics notation, revision 2, Available Online at Tue. Research. Nl, 2019.
|
[48]
|
V. S. Varadarajan, Lie Groups, Lie Algebras, and Their Representations, Reprint of the 1974 edition. Graduate Texts in Mathematics, 102. Springer-Verlag, New York, 1984.
doi: 10.1007/978-1-4612-1126-6.
|
[49]
|
M. W. Walker and D. E. Orin, Efficient dynamic computer simulation of robotic mechanisms, J. Dyn. Sys., Meas., Control., 104 (1982), 205-211.
doi: 10.1115/1.3139699.
|