September  2022, 14(3): 473-490. doi: 10.3934/jgm.2022015

Atmospheric Ekman flows with uniform density in ellipsoidal coordinates: Explicit solution and dynamical properties

1. 

Department of Mathematics, Guizhou University, Guiyang, Guizhou 550025, China

2. 

Department of Mathematical Analysis and Numerical Mathematics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina, 842 48 Bratislava, Slovakia

3. 

Mathematical Institute, Slovak Academy of Sciences, Štefánikova 49, 814 73 Bratislava, Slovakia

*Corresponding author: JinRong Wang

Received  February 2022 Revised  May 2022 Published  September 2022 Early access  June 2022

Fund Project: This work is partially supported by the National Natural Science Foundation of China (12161015), Training Object of High Level and Innovative Talents of Guizhou Province ((2016)4006), Guizhou Data Driven Modeling Learning and Optimization Innovation Team ([2020]5016), Major Project of Guizhou Postgraduate Education and Teaching Reform (YJSJGKT[2021]041), the Slovak Research and Development Agency under the contract No. APVV-18-0308, and the Slovak Grant Agency VEGA No.1/0358/20 and No.2/0127/20

In this paper, we present a new general system of equations describing the steady motion of atmosphere with uniform density in ellipsoidal coordinates, which is derived from the general governing equations for viscous fluids. We first show that this new system can be reduced to the classic Ekman equations. Secondly, we obtain the explicit solution of the Ekman equations in ellipsoidal coordinates. Thirdly, for the viscosity related to the height, we obtain the solution of the classical problem with zero acceleration at the bottom of Ekman layer. Finally, the uniqueness and dynamical properties of solution are demonstrated.

Citation: Taoyu Yang, Michal Fečkan, JinRong Wang. Atmospheric Ekman flows with uniform density in ellipsoidal coordinates: Explicit solution and dynamical properties. Journal of Geometric Mechanics, 2022, 14 (3) : 473-490. doi: 10.3934/jgm.2022015
References:
[1]

C. Chicone, Ordinary Differential Equations with Applications, Springer-Verlag, New York, 2006.

[2]

A. Constantin and R. S. Johnson, Atmospheric Ekman flows with variable eddy viscosity, Boundary-Layer Meteorol., 170 (2019), 395-414. 

[3]

A. Constantin and R. S. Johnson, On the modelling of large-scale atmospheric flows, J. Differential Equations, 285 (2021), 751-798.  doi: 10.1016/j.jde.2021.03.019.

[4]

A. Constantin and R. S. Johnson, On the propagation of waves in the atmosphere, Proc. R. Soc. A, 477 (2021), 20200424. 

[5]

A. Constantin and R. S. Johnson, On the propagation of nonlinear waves in the atmosphere, Proc. R. Soc. A, 478 (2022), 20210895.  doi: 10.1098/rspa.2021.0895.

[6]

W. A. Coppel, Dichotomies in Stability Theory, Springer-Verlag, Berlin, 1978.

[7]

Y. Du and R. Rotumno, A simple analytical model of the nocturnal low-level jet over the great plains of the United States, J. Atmos. Sci., 71 (2014), 3674-3683. 

[8]

V. W. Ekman, On the influence of the earth's rotation on ocean-currents, Ark. Mat. Astr. Fys., 2 (1905), 1-52. 

[9]

B. GayenS. Sarkar and J. R. Taylor, Large eddy simulation of oscillating boundary layer under an oscillatory current, J. Fluid Mech., 643 (2010), 233-266. 

[10]

Y. GuanJ. Wang and M. Fečkan, Explicit solution and dynamical properties of Atmospheric Ekman flows with boundary conditions, Electron. J. Qual. Theory Differ. Equ., 30 (2021), 1-19.  doi: 10.14232/ejqtde.2021.1.3.

[11]

Y. GuanM. Fečkan and J. Wang, Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows, Discrete Contin. Dyn. Syst., 41 (2021), 1157-1176.  doi: 10.3934/dcds.2020313.

[12] J. R. Holton, An Introduction to Dynamic Meteorology, Academic Press, New York, 2004. 
[13]

C. T. HsuX. Y. Lu and M. K. Kwan, LES and RANS studies of oscillating flows over flat plate, J. Eng. Mech., 126 (2000), 186-193. 

[14]

D. Ionescu-Kruse, Analytical atmospheric Ekman-type solutions with height-dependent eddy viscosities, J. Math. Fluid Mech., 23 (2021), 18.  doi: 10.1007/s00021-020-00543-1.

[15]

O. S. Madsen, A realistic model of the wind-induced boundary layer, J. Atmos. Sci., 7 (1977), 248-255. 

[16] J. Marshall and R. A. Plumb, Atmosphere Ocean and Climate Dynamic: An Introduction Text, Academic Press, New York, 2016. 
[17]

J. Miles, Analytical solutions for the Ekman layer, Boundary-Layer Meteorol., 67 (1994), 1-10. 

[18]

M. Mostafa and E. Bou-Zeid, Anaylitical reduced models for the non-stationary diabatic atmospheric boundary layer, Boundary-Layer Meteorol., 164 (2017), 383-399. 

[19]

M. Mostafa and E. Bou-Zeid, Large-eddy simulations and damped-oscillator models of the unsteady Ekman boundary layer, J. Atmos. Sci., 73 (2016), 25-40. 

[20]

F. T. M. Nieuwstadt, On the solution of the stationary, baroclinic Ekman-layer equations with a finite boundary-layer height, Boundary-Layer Meteorol., 26 (1983), 377-390. 

[21]

S. Radhakrishnan and U. Piomelli, Large-eddy simulation of oscillating boundary layers: Model comparison and validation, J. Geophys. Res., 113 (2008), 1-14. 

[22]

R. C. Robinson, An Introduction to Dynamical Systems: Continuous and Discrete, Prentice Hall, Upper Saddle River, 2004.

[23]

W. J. Rugh, Linear System Theory, Prentice Hall, Upper Saddle River, 1996.

[24]

A. E. Taylor and D. C. Lay, Introduction to Functional Analysis, Wiley, New Jersey, 1980.

[25]

A. Viúdez and D. G. Dritschel, Vertical velocity in mesoscale geophysical flows, J. Fluid Mech., 483 (2003), 199-223.  doi: 10.1017/S0022112003004191.

[26]

J. Wang, M. Fečkan and Y. Guan, Local and global analysis for discontinuous atmospheric Ekman equations, to appear, J. Dynam. Differential Equations. doi: 10.1007/s10884-021-10037-x.

[27]

J. WangM. Fečkan and W. Zhang, On the nonlocal boundary value problem of geophysical fluid flows, Z. Angew. Math. Phys., 72 (2021), 27.  doi: 10.1007/s00033-020-01452-z.

[28] W. Zdunkowski and A. Bott, Dynamics of the Atmosphere, Cambridge University Press, Cambridge, 2003.  doi: 10.1017/CBO9780511805462.

show all references

References:
[1]

C. Chicone, Ordinary Differential Equations with Applications, Springer-Verlag, New York, 2006.

[2]

A. Constantin and R. S. Johnson, Atmospheric Ekman flows with variable eddy viscosity, Boundary-Layer Meteorol., 170 (2019), 395-414. 

[3]

A. Constantin and R. S. Johnson, On the modelling of large-scale atmospheric flows, J. Differential Equations, 285 (2021), 751-798.  doi: 10.1016/j.jde.2021.03.019.

[4]

A. Constantin and R. S. Johnson, On the propagation of waves in the atmosphere, Proc. R. Soc. A, 477 (2021), 20200424. 

[5]

A. Constantin and R. S. Johnson, On the propagation of nonlinear waves in the atmosphere, Proc. R. Soc. A, 478 (2022), 20210895.  doi: 10.1098/rspa.2021.0895.

[6]

W. A. Coppel, Dichotomies in Stability Theory, Springer-Verlag, Berlin, 1978.

[7]

Y. Du and R. Rotumno, A simple analytical model of the nocturnal low-level jet over the great plains of the United States, J. Atmos. Sci., 71 (2014), 3674-3683. 

[8]

V. W. Ekman, On the influence of the earth's rotation on ocean-currents, Ark. Mat. Astr. Fys., 2 (1905), 1-52. 

[9]

B. GayenS. Sarkar and J. R. Taylor, Large eddy simulation of oscillating boundary layer under an oscillatory current, J. Fluid Mech., 643 (2010), 233-266. 

[10]

Y. GuanJ. Wang and M. Fečkan, Explicit solution and dynamical properties of Atmospheric Ekman flows with boundary conditions, Electron. J. Qual. Theory Differ. Equ., 30 (2021), 1-19.  doi: 10.14232/ejqtde.2021.1.3.

[11]

Y. GuanM. Fečkan and J. Wang, Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows, Discrete Contin. Dyn. Syst., 41 (2021), 1157-1176.  doi: 10.3934/dcds.2020313.

[12] J. R. Holton, An Introduction to Dynamic Meteorology, Academic Press, New York, 2004. 
[13]

C. T. HsuX. Y. Lu and M. K. Kwan, LES and RANS studies of oscillating flows over flat plate, J. Eng. Mech., 126 (2000), 186-193. 

[14]

D. Ionescu-Kruse, Analytical atmospheric Ekman-type solutions with height-dependent eddy viscosities, J. Math. Fluid Mech., 23 (2021), 18.  doi: 10.1007/s00021-020-00543-1.

[15]

O. S. Madsen, A realistic model of the wind-induced boundary layer, J. Atmos. Sci., 7 (1977), 248-255. 

[16] J. Marshall and R. A. Plumb, Atmosphere Ocean and Climate Dynamic: An Introduction Text, Academic Press, New York, 2016. 
[17]

J. Miles, Analytical solutions for the Ekman layer, Boundary-Layer Meteorol., 67 (1994), 1-10. 

[18]

M. Mostafa and E. Bou-Zeid, Anaylitical reduced models for the non-stationary diabatic atmospheric boundary layer, Boundary-Layer Meteorol., 164 (2017), 383-399. 

[19]

M. Mostafa and E. Bou-Zeid, Large-eddy simulations and damped-oscillator models of the unsteady Ekman boundary layer, J. Atmos. Sci., 73 (2016), 25-40. 

[20]

F. T. M. Nieuwstadt, On the solution of the stationary, baroclinic Ekman-layer equations with a finite boundary-layer height, Boundary-Layer Meteorol., 26 (1983), 377-390. 

[21]

S. Radhakrishnan and U. Piomelli, Large-eddy simulation of oscillating boundary layers: Model comparison and validation, J. Geophys. Res., 113 (2008), 1-14. 

[22]

R. C. Robinson, An Introduction to Dynamical Systems: Continuous and Discrete, Prentice Hall, Upper Saddle River, 2004.

[23]

W. J. Rugh, Linear System Theory, Prentice Hall, Upper Saddle River, 1996.

[24]

A. E. Taylor and D. C. Lay, Introduction to Functional Analysis, Wiley, New Jersey, 1980.

[25]

A. Viúdez and D. G. Dritschel, Vertical velocity in mesoscale geophysical flows, J. Fluid Mech., 483 (2003), 199-223.  doi: 10.1017/S0022112003004191.

[26]

J. Wang, M. Fečkan and Y. Guan, Local and global analysis for discontinuous atmospheric Ekman equations, to appear, J. Dynam. Differential Equations. doi: 10.1007/s10884-021-10037-x.

[27]

J. WangM. Fečkan and W. Zhang, On the nonlocal boundary value problem of geophysical fluid flows, Z. Angew. Math. Phys., 72 (2021), 27.  doi: 10.1007/s00033-020-01452-z.

[28] W. Zdunkowski and A. Bott, Dynamics of the Atmosphere, Cambridge University Press, Cambridge, 2003.  doi: 10.1017/CBO9780511805462.
Figure 1.  Away from the polar axis, we represent a point $ P $ in the atmosphere using the hybrid spherical-geopotential rotating coordinate system $ (\varphi,\theta,\tilde{z}) $, obtained from the spherical system $ (\bf{e}_\varphi,\bf{e}_\theta,\bf{e}_r) $ and the geopotential system $ (\bf{e}_\varphi,\bf{e}_\beta,\bf{e}_z) $. Here, $ \varphi $ and $ \theta $ are the longitude and geocentric latitude of $ P $, respectively, $ \beta $ and $ \alpha $ are the geodetic and geocentric latitude of the projection $ P^* $ of $ P $ on the ellipsoidal geoid, respectively, and $ \bf{e}_z $ points upwards along the normal $ P^*P $ to the geoid (which intersects the equatorial plane in the point $ P_e $). The unit vectors $ (\bf{e}_\theta,\bf{e}_r) $ are obtained by rotating the unit vectors $ (\bf{e}_\beta,\bf{e}_z) $ by the angle $ (\beta-\theta) $, in the plane of fixed longitude $ \varphi $
[1]

Alexander Sakhnovich. Dynamical canonical systems and their explicit solutions. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1679-1689. doi: 10.3934/dcds.2017069

[2]

Bernard Brighi, Tewfik Sari. Blowing-up coordinates for a similarity boundary layer equation. Discrete and Continuous Dynamical Systems, 2005, 12 (5) : 929-948. doi: 10.3934/dcds.2005.12.929

[3]

Dehua Wang. Global existence and dynamical properties of large solutions for combustion flows. Conference Publications, 2003, 2003 (Special) : 888-897. doi: 10.3934/proc.2003.2003.888

[4]

Sen-Zhong Huang, Peter Takáč. Global smooth solutions of the complex Ginzburg-Landau equation and their dynamical properties. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 825-848. doi: 10.3934/dcds.1999.5.825

[5]

Yi Guan, Michal Fečkan, Jinrong Wang. Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1157-1176. doi: 10.3934/dcds.2020313

[6]

Vadim S. Anishchenko, Tatjana E. Vadivasova, Galina I. Strelkova, George A. Okrokvertskhov. Statistical properties of dynamical chaos. Mathematical Biosciences & Engineering, 2004, 1 (1) : 161-184. doi: 10.3934/mbe.2004.1.161

[7]

Giovanni Panti. Dynamical properties of logical substitutions. Discrete and Continuous Dynamical Systems, 2006, 15 (1) : 237-258. doi: 10.3934/dcds.2006.15.237

[8]

Platon Surkov. Dynamical estimation of a noisy input in a system with a Caputo fractional derivative. The case of continuous measurements of a part of phase coordinates. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022020

[9]

Liu Rui. The explicit nonlinear wave solutions of the generalized $b$-equation. Communications on Pure and Applied Analysis, 2013, 12 (2) : 1029-1047. doi: 10.3934/cpaa.2013.12.1029

[10]

Liping Wang, Chunyi Zhao. Solutions with clustered bubbles and a boundary layer of an elliptic problem. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2333-2357. doi: 10.3934/dcds.2014.34.2333

[11]

Liping Wang, Juncheng Wei. Solutions with interior bubble and boundary layer for an elliptic problem. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 333-351. doi: 10.3934/dcds.2008.21.333

[12]

Valentin Butuzov, Nikolay Nefedov, Oleh Omel'chenko, Lutz Recke. Boundary layer solutions to singularly perturbed quasilinear systems. Discrete and Continuous Dynamical Systems - B, 2022, 27 (8) : 4255-4283. doi: 10.3934/dcdsb.2021226

[13]

André Fischer, Jürgen Saal. On instability of the Ekman spiral. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1225-1236. doi: 10.3934/dcdss.2013.6.1225

[14]

Mariko Arisawa, Hitoshi Ishii. Some properties of ergodic attractors for controlled dynamical systems. Discrete and Continuous Dynamical Systems, 1998, 4 (1) : 43-54. doi: 10.3934/dcds.1998.4.43

[15]

Aubin Arroyo, Enrique R. Pujals. Dynamical properties of singular-hyperbolic attractors. Discrete and Continuous Dynamical Systems, 2007, 19 (1) : 67-87. doi: 10.3934/dcds.2007.19.67

[16]

Vincent Penné, Benoît Saussol, Sandro Vaienti. Dimensions for recurrence times: topological and dynamical properties. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 783-798. doi: 10.3934/dcds.1999.5.783

[17]

Dirk Frettlöh, Christoph Richard. Dynamical properties of almost repetitive Delone sets. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 531-556. doi: 10.3934/dcds.2014.34.531

[18]

Palle Jorgensen, Feng Tian. Dynamical properties of endomorphisms, multiresolutions, similarity and orthogonality relations. Discrete and Continuous Dynamical Systems - S, 2019, 12 (8) : 2307-2348. doi: 10.3934/dcdss.2019146

[19]

Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete and Continuous Dynamical Systems - S, 2022, 15 (2) : 265-281. doi: 10.3934/dcdss.2021004

[20]

Martino Bardi. Explicit solutions of some linear-quadratic mean field games. Networks and Heterogeneous Media, 2012, 7 (2) : 243-261. doi: 10.3934/nhm.2012.7.243

2021 Impact Factor: 0.737

Metrics

  • PDF downloads (110)
  • HTML views (103)
  • Cited by (0)

Other articles
by authors

[Back to Top]