We deal with the reversible dynamics of coupled quantum and classical systems. Based on a recent proposal by the authors, we exploit the theory of hybrid quantum–classical wavefunctions to devise a closure model for the coupled dynamics in which both the quantum density matrix and the classical Liouville distribution retain their initial positive sign. In this way, the evolution allows identifying a classical and a quantum state in interaction at all times, thereby addressing a series of stringent consistency requirements. After combining Koopman's Hilbert-space method in classical mechanics with van Hove's unitary representations in prequantum theory, the closure model is made available by the variational structure underlying a suitable wavefunction factorization. Also, we use Poisson reduction by symmetry to show that the hybrid model possesses a noncanonical Poisson structure that does not seem to have appeared before. As an example, this structure is specialized to the case of quantum two-level systems.
Citation: |
[1] |
A. Abedi, N. T. Maitra and E. K. U Gross, Correlated electron-nuclear dynamics: Exact factorization of the molecular wavefunction, J. Chem. Phys., 137 (2012).
doi: 10.1063/1.4745836.![]() ![]() |
[2] |
F. Agostini, S. Caprara and G. Ciccotti, Do we have a consistent non-adiabatic quantum-classical mechanics?, Europhys. Lett. EPL, 78 (2007), 6 pp.
doi: 10.1209/0295-5075/78/30001.![]() ![]() ![]() |
[3] |
I. V. Aleksandrov, The statistical dynamics of a system consisting of a classical and a quantum subsystem, Z. Naturforsch. A., 36 (1981), 902-908.
doi: 10.1515/zna-1981-0819.![]() ![]() ![]() |
[4] |
A. V. Akimov, R. Long and O. V. Prezhdo, Coherence penalty functional: A simple method for adding decoherence in Ehrenfest dynamics, J. Chem. Phys., 140 (2014).
doi: 10.1063/1.4875702.![]() ![]() |
[5] |
C. Barceló, R. Carballo-Rubio, L. J. Garay, and R. Gómez-Escalante, Hybrid classical-quantum formulations ask for hybrid notions, Phys. Rev. A, 86 (2012).
doi: 10.1103/PhysRevA.86.042120.![]() ![]() |
[6] |
A. D. Bermúdez Manjarres, Projective representation of the Galilei group for classical and quantum-classical systems, J. Phys. A, 54 (2021), 9 pp.
doi: 10.1088/1751-8121/ac28cc.![]() ![]() ![]() |
[7] |
M. V. Berry, True quantum chaos? An instructive example, in New Trends in Nuclear Collective Dynamics, Springer Proceedings in Physics, 58, Springer, Berlin, Heidelberg, 1992,183-186.
doi: 10.1007/978-3-642-76379-3_10.![]() ![]() |
[8] |
G. Bhole, J. A. Jones, C. Marletto and V. Vedral, Witnesses of non-classicality for simulated hybrid quantum systems, J. Phys. Comm., 4 (2020).
doi: 10.1088/2399-6528/ab772b.![]() ![]() |
[9] |
I. Bialynicki-Birula, M. Cieplak, J. Karminski and and A. M. Furdyna, Theory of Quanta, Oxford University Press, 1992.
![]() |
[10] |
D. Bondar, R. Cabrera, R. R. Lompay, M. Y. Ivanov, and H. A. Rabitz, Operational dynamic modeling transcending quantum and classical mechanics, Phys. Rev. Lett., 109 (2012).
doi: 10.1103/PhysRevLett.109.190403.![]() ![]() |
[11] |
D. I. Bondar, F. Gay-Balmaz and C. Tronci, Koopman wavefunctions and classical-quantum correlation dynamics, Proc. A, 475 (2019), 18 pp.
doi: 10.1098/rspa.2018.0879.![]() ![]() ![]() |
[12] |
W. Boucher and J. Traschen, Semiclassical physics and quantum fluctuations, Phys. Rev. D, 37 (1988), 3522-3532.
doi: 10.1103/PhysRevD.37.3522.![]() ![]() |
[13] |
M. Budišić, R. Mohr and I. Mezić, Applied Koopmanism, Chaos, 22 (2012), 33 pp.
doi: 10.1063/1.4772195.![]() ![]() ![]() |
[14] |
S. M. Carroll and J. Lodman, Energy non-conservation in quantum mechanics, Found. Phys., 51 (2021), 15 pp.
doi: 10.1007/s10701-021-00490-5.![]() ![]() ![]() |
[15] |
H. Cendra, J. E. Marsden, S. Pekarsky and T. S. Ratiu, Variational principles for Lie-Poisson and Hamilton-Poincaré equations, Mosc. Math. J., 3 (2003), 833-867, 1197-1198.
![]() ![]() |
[16] |
D. Chruściński, A. Kossakowski, G. Marmo and E. C. G. Sudarshan, Dynamics of interacting classical and quantum systems, Open. Syst. Inf. Dyn., 18 (2011), 339-351.
doi: 10.1142/S1230161211000236.![]() ![]() ![]() |
[17] |
G. Della Riccia and N. Wiener, Wave mechanics in classical phase space, Brownian motion, and quantum theory, J. Mathematical Phys., 7 (1966), 1372-1383.
doi: 10.1063/1.1705047.![]() ![]() ![]() |
[18] |
L. Diósi and J. J. Halliwell, Coupling classical and quantum variables using continuous quantum measurement theory, Phys. Rev. Lett., 81 (1998), 2846-2849.
doi: 10.1103/PhysRevLett.81.2846.![]() ![]() ![]() |
[19] |
F. Faure, Prequantum chaos: Resonances of the prequantum cat map, J. Mod. Dyn., 1 (2007), 255-285.
doi: 10.3934/jmd.2007.1.255.![]() ![]() ![]() |
[20] |
R. P. Feynman, Negative probability, in Quantum Implications, Routledge & Kegan Paul, London, 1987,235–248.
![]() ![]() |
[21] |
M. S. Foskett, D. D. Holm and C. Tronci, Geometry of nonadiabatic quantum hydrodynamics, Acta Appl. Math., 162 (2019), 63-103.
doi: 10.1007/s10440-019-00257-1.![]() ![]() ![]() |
[22] |
M. S. Foskett and C. Tronci, Holonomy and vortex structures in quantum hydrodynamics,
in Hamiltonian Systems: Dynamics, Analysis, Applications, Math. Sci. Res. Inst. Pub., 72,
Cambridge University Press, 2022.
![]() |
[23] |
F. Gay-Balmaz and T. S. Ratiu, The geometric structure of complex fluids, Adv. in Appl. Math., 42 (2009), 176-275.
doi: 10.1016/j.aam.2008.06.002.![]() ![]() ![]() |
[24] |
F. Gay-Balmaz and C. Tronci, Evolution of hybrid quantum-classical wavefunctions, Phys. D, 440 (2022).
doi: 10.1016/j.physd.2022.133450.![]() ![]() ![]() |
[25] |
F. Gay-Balmaz and C. Tronci, From quantum hydrodynamics to Koopman wavefunctions I, in Geometric Science of Information, Lecture Notes in Comput. Sci., 12829, Springer, Cham, 2021,302-310.
doi: 10.1007/978-3-030-80209-7_34.![]() ![]() ![]() |
[26] |
F. Gay-Balmaz and C. Tronci, Madelung transform and probability densities in hybrid quantum-classical dynamics, Nonlinearity, 33 (2020), 5383-5424.
doi: 10.1088/1361-6544/aba233.![]() ![]() ![]() |
[27] |
F. Gay-Balmaz and C. Tronci, Vlasov moment flows and geodesics on the Jacobi group, J. Math. Phys., 53 (2012), 36 pp.
doi: 10.1063/1.4763467.![]() ![]() ![]() |
[28] |
V. I. Gerasimenko, Dynamical equations of quantum-classical systems, Teoret. Mat. Fiz., 50 (1982), 77-87.
![]() ![]() |
[29] |
D. Giannakis, A. Ourmazd, P. Pfeffer, J. Schumacher, and J. Slawinska, Embedding classical dynamics in a quantum computer, Phys. Rev. A, 105 (2022), 47 pp.
doi: 10.1103/physreva.105.052404.![]() ![]() ![]() |
[30] |
V. Guillemin and S. Sternberg, The moment map and collective motion, Ann. Physics, 127 (1980), 220-253.
doi: 10.1016/0003-4916(80)90155-4.![]() ![]() ![]() |
[31] |
M. J. W. Hall and M. Reginatto, Ensembles on Configuration Space. Classical, Quantum, and Beyond, Fundamental Theories of Physics, 184, Springer, Cham, 2016.
doi: 10.1007/978-3-319-34166-8.![]() ![]() ![]() |
[32] |
D. D. Holm, Euler-Poincaré dynamics of perfect complex fluids, in Geometry, Mechanics, and Dynamics, Springer, New York, 2002,113-167.
doi: 10.1007/b97525.![]() ![]() ![]() |
[33] |
D. D. Holm, J. E. Marsden and T. S. Ratiu, The Euler-Poincaré equations and semidirect products with applications to continuum theories, Adv. Math., 137 (1998), 1-81.
doi: 10.1006/aima.1998.1721.![]() ![]() ![]() |
[34] |
D. D. Holm, J. I. Rawlinson and C. Tronci, The bohmion method in nonadiabatic quantum hydrodynamics, J. Phys. A, 54 (2021), 24 pp.
doi: 10.1088/1751-8121/ac2ae8.![]() ![]() ![]() |
[35] |
J. Hurst, P.-A. Hervieux and G. Manfredi, Phase-space methods for the spin dynamics in condensed matter systems, Phil. Trans. Roy. Soc. A, 375 (2017), 14 pp.
doi: 10.1098/rsta.2016.0199.![]() ![]() ![]() |
[36] |
R. S. Ismagilov, M. Losik and P. Michor, A 2-cocycle on a symplectomorphism group, Mosc. Math. J., 6 (2006), 307-315,407.
![]() ![]() |
[37] |
H.-R. Jauslin and D. Sugny, Dynamics of mixed quantum-classical systems, geometric quantization and coherent states, in Mathematical Horizons for Quantum Physics, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 20, World Sci. Publ., Hackensack, NJ, 2010, 65-96.
doi: 10.1142/9789814313322_0003.![]() ![]() ![]() |
[38] |
I. Joseph, Koopman-von Neumann approach to quantum simulation of nonlinear classical dynamics, Phys. Rev. Res., 2 (2020).
doi: 10.1103/PhysRevResearch.2.043102.![]() ![]() |
[39] |
R. Kapral, Progress in the theory of mixed quantum-classical dynamics, Ann. Rev. Phys. Chem., 57 (2006), 129-157.
doi: 10.1146/annurev.physchem.57.032905.104702.![]() ![]() |
[40] |
B. Khesin, G. Misiołek and K. Modin, Geometry of the Madelung transform, Arch. Ration. Mech. Anal., 234 (2019), 549-573.
doi: 10.1007/s00205-019-01397-2.![]() ![]() ![]() |
[41] |
B. O. Koopman, Hamiltonian systems and transformation in Hilbert space, Proc. Nat. Acad. Sci., 17 (1931), 315-318.
doi: 10.1073/pnas.17.5.31.![]() ![]() |
[42] |
B. Kostant, Line bundles and the prequantized Schrödinger equation, in Colloquium on Group Theoretical Methods in Physics, Centre de Physique Théorique, Marseille, 1972.
![]() |
[43] |
B. Kostant, Quantization and unitary representations. I. Prequantization, in Lectures in Modern Analysis and Applications, III, Lecture Notes in Math., 170, Springer, Berlin, 1970, 87–208.
![]() ![]() |
[44] |
E. Madelung, Quantentheorie in hydrodynamischer Form, Z. Phys., 40 (1927), 322-326.
doi: 10.1007/BF01400372.![]() ![]() |
[45] |
J.-P. Ortega and T. S. Ratiu, Momentum Maps and Hamiltonian Reduction, Progress in Mathematics, 222, Birkhäuser Boston, Inc., Boston, MA, 2004.
doi: 10.1007/978-1-4757-3811-7.![]() ![]() ![]() |
[46] |
A. Peres and D. R. Terno, Hybrid quantum-classical dynamics, Phys. Rev. A, 63 (2001).
doi: 10.1103/PhysRevA.63.022101.![]() ![]() |
[47] |
O. V. Prezhdo and V. V. Kisil, Mixing quantum and classical mechanics, Phys. Rev. A (3), 56 (1997), 162-175.
doi: 10.1103/PhysRevA.56.162.![]() ![]() ![]() |
[48] |
C. Rangan and A. M. Bloch, Control of finite-dimensional quantum systems: Application to a spin-$\frac12$ particle coupled with a finite quantum harmonic oscillator, J. Math. Phys., 46 (2005), 9 pp.
doi: 10.1063/1.1852701.![]() ![]() ![]() |
[49] |
L. L. Salcedo, Absence of classical and quantum mixing, Phys. Rev. A, 54 (1996), 3657-3660.
doi: 10.1103/PhysRevA.54.3657.![]() ![]() |
[50] |
J.-M. Souriau, Quantification géométrique, Comm. Math. Phys., 1 (1966), 374-398.
![]() ![]() |
[51] |
E. C. G. Sudarshan, Interaction between classical and quantum systems and the measurement of quantum observables, Pramana, 6 (1976), 117-126.
doi: 10.1007/BF02847120.![]() ![]() |
[52] |
I. Tavernelli, B. F. E. Curchod and U. Rothlisberger, Mixed quantum-classical dynamics with time-dependent external fields: A time-dependent density-functional-theory approach, Phys. Rev A, 81 (2010).
doi: 10.1103/PhysRevA.81.052508.![]() ![]() |
[53] |
G. 't Hooft, Quantum-mechanical behaviour in a deterministic model, Found. Phys. Lett., 10 (1997), 105-111.
doi: 10.1007/BF02764232.![]() ![]() ![]() |
[54] |
D. R. Terno, Inconsistency of quantum-classical dynamics, and what it implies, Found. Phys., 36 (2006), 102-111.
doi: 10.1007/s10701-005-9007-y.![]() ![]() ![]() |
[55] |
C. Tronci, Hybrid models for perfect complex fluids with multipolar interactions, J. Geom. Mech., 4 (2012), 333-363.
doi: 10.3934/jgm.2012.4.333.![]() ![]() ![]() |
[56] |
C. Tronci, Momentum maps for mixed states in quantum and classical mechanics, J. Geom. Mech., 11 (2019), 639-656.
doi: 10.3934/jgm.2019032.![]() ![]() ![]() |
[57] |
C. Tronci and F. Gay-Balmaz, From quantum hydrodynamics to Koopman wavefunctions II, in Geometric Science of Information, Lecture Notes in Comput. Sci., 12829, Springer, Cham, 2021,311-319.
doi: 10.1007/978-3-030-80209-7_35.![]() ![]() ![]() |
[58] |
C. Tronci and I. Joseph, Koopman wavefunctions and Clebsch variables in Vlasov-Maxwell kinetic theory, J. Plasma Phys., 87 (2021).
doi: 10.1017/S0022377821000805.![]() ![]() |
[59] |
J. C. Tully, Mixed quantum-classical dynamics, Faraday Discuss., 110 (1998), 407-419.
doi: 10.1039/A801824C.![]() ![]() |
[60] |
L. van Hove, On certain unitary representations of an infinite group of transformations, World Scientific Publishing Co., Inc., River Edge, NJ, 2001.
doi: 10.1142/9789812838988.![]() ![]() ![]() |
[61] |
A. Widom and Y. Srivastava, Lagrangian formulation of Bohr's measurement theory, Nuovo Cimento B (11), 107 (1992), 71-75.
doi: 10.1007/BF02726886.![]() ![]() ![]() |