July  2005, 1(3): 315-321. doi: 10.3934/jimo.2005.1.315

Some new results on multi-dimension Knapsack problem

1. 

College of Operations Research and Management Science, Qufu Normal University, Rizhao, Shandong, China

2. 

Department of Computing, Hong Kong Polytechnic niversity, Hong Kong, China

3. 

Institute of Systems Science, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing, China

Received  July 2004 Revised  January 2005 Published  July 2005

We claim a conclusion on Multi-Dimensional Knapsack Problem (MKP), which extends an important proposition by Dantzig firstly, then address to a special case of this problem, and constitute a polynomial algorithm, extending Zukerman et al's work.
Citation: Yuzhong Zhang, Fan Zhang, Maocheng Cai. Some new results on multi-dimension Knapsack problem. Journal of Industrial and Management Optimization, 2005, 1 (3) : 315-321. doi: 10.3934/jimo.2005.1.315
[1]

Xiaoling Sun, Hongbo Sheng, Duan Li. An exact algorithm for 0-1 polynomial knapsack problems. Journal of Industrial and Management Optimization, 2007, 3 (2) : 223-232. doi: 10.3934/jimo.2007.3.223

[2]

Chenchen Wu, Dachuan Xu, Xin-Yuan Zhao. An improved approximation algorithm for the $2$-catalog segmentation problem using semidefinite programming relaxation. Journal of Industrial and Management Optimization, 2012, 8 (1) : 117-126. doi: 10.3934/jimo.2012.8.117

[3]

Gaidi Li, Zhen Wang, Dachuan Xu. An approximation algorithm for the $k$-level facility location problem with submodular penalties. Journal of Industrial and Management Optimization, 2012, 8 (3) : 521-529. doi: 10.3934/jimo.2012.8.521

[4]

Jing Quan, Zhiyou Wu, Guoquan Li. Global optimality conditions for some classes of polynomial integer programming problems. Journal of Industrial and Management Optimization, 2011, 7 (1) : 67-78. doi: 10.3934/jimo.2011.7.67

[5]

Jing Zhou, Dejun Chen, Zhenbo Wang, Wenxun Xing. A conic approximation method for the 0-1 quadratic knapsack problem. Journal of Industrial and Management Optimization, 2013, 9 (3) : 531-547. doi: 10.3934/jimo.2013.9.531

[6]

Yaw Chang, Lin Chen. Solve the vehicle routing problem with time windows via a genetic algorithm. Conference Publications, 2007, 2007 (Special) : 240-249. doi: 10.3934/proc.2007.2007.240

[7]

Wan Nor Ashikin Wan Ahmad Fatthi, Adibah Shuib, Rosma Mohd Dom. A mixed integer programming model for solving real-time truck-to-door assignment and scheduling problem at cross docking warehouse. Journal of Industrial and Management Optimization, 2016, 12 (2) : 431-447. doi: 10.3934/jimo.2016.12.431

[8]

Chuanhao Guo, Erfang Shan, Wenli Yan. A superlinearly convergent hybrid algorithm for solving nonlinear programming. Journal of Industrial and Management Optimization, 2017, 13 (2) : 1009-1024. doi: 10.3934/jimo.2016059

[9]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial and Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[10]

Jian Sun, Haiyun Sheng, Yuefang Sun, Donglei Du, Xiaoyan Zhang. Approximation algorithm with constant ratio for stochastic prize-collecting Steiner tree problem. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021116

[11]

Min Li, Yishui Wang, Dachuan Xu, Dongmei Zhang. The approximation algorithm based on seeding method for functional $ k $-means problem. Journal of Industrial and Management Optimization, 2022, 18 (1) : 411-426. doi: 10.3934/jimo.2020160

[12]

Chenchen Wu, Wei Lv, Yujie Wang, Dachuan Xu. Approximation algorithm for spherical $ k $-means problem with penalty. Journal of Industrial and Management Optimization, 2022, 18 (4) : 2277-2287. doi: 10.3934/jimo.2021067

[13]

Weihua Liu, Andrew Klapper. AFSRs synthesis with the extended Euclidean rational approximation algorithm. Advances in Mathematics of Communications, 2017, 11 (1) : 139-150. doi: 10.3934/amc.2017008

[14]

Ali Fuat Alkaya, Dindar Oz. An optimal algorithm for the obstacle neutralization problem. Journal of Industrial and Management Optimization, 2017, 13 (2) : 835-856. doi: 10.3934/jimo.2016049

[15]

Zhiguo Feng, Ka-Fai Cedric Yiu. Manifold relaxations for integer programming. Journal of Industrial and Management Optimization, 2014, 10 (2) : 557-566. doi: 10.3934/jimo.2014.10.557

[16]

Palash Sarkar, Shashank Singh. A unified polynomial selection method for the (tower) number field sieve algorithm. Advances in Mathematics of Communications, 2019, 13 (3) : 435-455. doi: 10.3934/amc.2019028

[17]

Mary Wilkerson. Thurston's algorithm and rational maps from quadratic polynomial matings. Discrete and Continuous Dynamical Systems - S, 2019, 12 (8) : 2403-2433. doi: 10.3934/dcdss.2019151

[18]

Hongguang Xiao, Wen Tan, Dehua Xiang, Lifu Chen, Ning Li. A study of numerical integration based on Legendre polynomial and RLS algorithm. Numerical Algebra, Control and Optimization, 2017, 7 (4) : 457-464. doi: 10.3934/naco.2017028

[19]

Lauri Oksanen. Solving an inverse problem for the wave equation by using a minimization algorithm and time-reversed measurements. Inverse Problems and Imaging, 2011, 5 (3) : 731-744. doi: 10.3934/ipi.2011.5.731

[20]

Binghai Zhou, Yuanrui Lei, Shi Zong. Lagrangian relaxation algorithm for the truck scheduling problem with products time window constraint in multi-door cross-dock. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021151

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (102)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]