• Previous Article
    Theoretical analysis and a search procedure for the joint replenishment problem with deteriorating products
  • JIMO Home
  • This Issue
  • Next Article
    A new recurrent neural network adaptive approach for host-gate way rate control protocol within intranets using ATM ABR service
July  2005, 1(3): 377-388. doi: 10.3934/jimo.2005.1.377

Nonlinear dynamical systems of bio-dissimilation of glycerol to 1,3-propanediol and their optimal controls

1. 

Department of Applied Mathematics, Dalian University of Technology, Dalian, Liaoning, 116024, P.R., China, China

2. 

Department of Applied Mathematics, Dalian University of Technology, Dalian, Liaoning, 116024, P.R, China

3. 

Department of Biotechnology, Dalian University of Technology, Dalian, Liaoning, 116012, China

Received  September 2004 Revised  February 2005 Published  July 2005

In this study simplified mathematical models of the nonlinear dynamic systems of dissimilation of glycerol to 1,3-propanediol by {\it Klebsiella pneumoniae} in continuous, batch and fed-batch cultures are investigated. Considering big errors between the experimental results and computational values in the existing models, the parameter identification models for these systems are established. The properties of the solutions for the nonlinear dynamic systems are discussed and the identifiability of the parameters is proved. In view of the sudden increase of the glycerol and alkali in fed-batch culture, this paper proposes a nonlinear impulsive system of fed-batch culture. The existence, uniqueness and regularity properties of piecewise solution for the system are proved. Based on the nonlinear impulsive system, the paper constructs an optimal control model in view of the controllability of volumes of glycerol added to the reactor instantaneously, and the existence of the optimal control is obtained.
Citation: Caixia Gao, Enmin Feng, Zongtao Wang, Zhilong Xiu. Nonlinear dynamical systems of bio-dissimilation of glycerol to 1,3-propanediol and their optimal controls. Journal of Industrial & Management Optimization, 2005, 1 (3) : 377-388. doi: 10.3934/jimo.2005.1.377
[1]

Lei Wang, Jinlong Yuan, Yingfang Li, Enmin Feng, Zhilong Xiu. Parameter identification of nonlinear delayed dynamical system in microbial fermentation based on biological robustness. Numerical Algebra, Control & Optimization, 2014, 4 (2) : 103-113. doi: 10.3934/naco.2014.4.103

[2]

Chongyang Liu, Zhaohua Gong, Enmin Feng, Hongchao Yin. Modelling and optimal control for nonlinear multistage dynamical system of microbial fed-batch culture. Journal of Industrial & Management Optimization, 2009, 5 (4) : 835-850. doi: 10.3934/jimo.2009.5.835

[3]

Yanan Mao, Caixia Gao, Ruidong Yan, Aruna Bai. Modeling and identification of hybrid dynamic system in microbial continuous fermentation. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 359-368. doi: 10.3934/naco.2015.5.359

[4]

Bangyu Shen, Xiaojing Wang, Chongyang Liu. Nonlinear state-dependent impulsive system in fed-batch culture and its optimal control. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 369-380. doi: 10.3934/naco.2015.5.369

[5]

C.Z. Wu, K. L. Teo. Global impulsive optimal control computation. Journal of Industrial & Management Optimization, 2006, 2 (4) : 435-450. doi: 10.3934/jimo.2006.2.435

[6]

Jinggui Gao, Xiaoyan Zhao, Jinggang Zhai. Optimal control of microbial fed-batch culture involving multiple feeds. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 339-349. doi: 10.3934/naco.2015.5.339

[7]

Yan Wang, Lei Wang, Yanxiang Zhao, Aimin Song, Yanping Ma. A stochastic model for microbial fermentation process under Gaussian white noise environment. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 381-392. doi: 10.3934/naco.2015.5.381

[8]

Michael Basin, Pablo Rodriguez-Ramirez. An optimal impulsive control regulator for linear systems. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 275-282. doi: 10.3934/naco.2011.1.275

[9]

Aram Arutyunov, Dmitry Karamzin, Fernando L. Pereira. On a generalization of the impulsive control concept: Controlling system jumps. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 403-415. doi: 10.3934/dcds.2011.29.403

[10]

Kareem T. Elgindy. Optimal control of a parabolic distributed parameter system using a fully exponentially convergent barycentric shifted gegenbauer integral pseudospectral method. Journal of Industrial & Management Optimization, 2018, 14 (2) : 473-496. doi: 10.3934/jimo.2017056

[11]

Canghua Jiang, Kok Lay Teo, Ryan Loxton, Guang-Ren Duan. A neighboring extremal solution for an optimal switched impulsive control problem. Journal of Industrial & Management Optimization, 2012, 8 (3) : 591-609. doi: 10.3934/jimo.2012.8.591

[12]

Hongyong Deng, Wei Wei. Existence and stability analysis for nonlinear optimal control problems with $1$-mean equicontinuous controls. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1409-1422. doi: 10.3934/jimo.2015.11.1409

[13]

Guirong Jiang, Qishao Lu, Linping Peng. Impulsive Ecological Control Of A Stage-Structured Pest Management System. Mathematical Biosciences & Engineering, 2005, 2 (2) : 329-344. doi: 10.3934/mbe.2005.2.329

[14]

Yunfei Peng, X. Xiang. A class of nonlinear impulsive differential equation and optimal controls on time scales. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1137-1155. doi: 10.3934/dcdsb.2011.16.1137

[15]

Monica Motta, Caterina Sartori. On ${\mathcal L}^1$ limit solutions in impulsive control. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1201-1218. doi: 10.3934/dcdss.2018068

[16]

Saroj P. Pradhan, Janos Turi. Parameter dependent stability/instability in a human respiratory control system model. Conference Publications, 2013, 2013 (special) : 643-652. doi: 10.3934/proc.2013.2013.643

[17]

Urszula Ledzewicz, Heinz Schättler. The Influence of PK/PD on the Structure of Optimal Controls in Cancer Chemotherapy Models. Mathematical Biosciences & Engineering, 2005, 2 (3) : 561-578. doi: 10.3934/mbe.2005.2.561

[18]

Peter I. Kogut, Olha P. Kupenko. On optimal control problem for an ill-posed strongly nonlinear elliptic equation with $p$-Laplace operator and $L^1$-type of nonlinearity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1273-1295. doi: 10.3934/dcdsb.2019016

[19]

Qun Lin, Ryan Loxton, Kok Lay Teo. The control parameterization method for nonlinear optimal control: A survey. Journal of Industrial & Management Optimization, 2014, 10 (1) : 275-309. doi: 10.3934/jimo.2014.10.275

[20]

Dariusz Idczak, Rafał Kamocki. Existence of optimal solutions to lagrange problem for a fractional nonlinear control system with riemann-liouville derivative. Mathematical Control & Related Fields, 2017, 7 (3) : 449-464. doi: 10.3934/mcrf.2017016

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (21)

Other articles
by authors

[Back to Top]