
Previous Article
Identification of Lamé parameters in linear elasticity: a fixed point approach
 JIMO Home
 This Issue

Next Article
Optimal parameter selection in support vector machines
Linear fractional vector optimization problems with many components in the solution sets
1.  HanoiAmsterdam High School, Hanoi, Vietnam 
2.  Institute of Mathematics, 18 Hoang Quoc Viet Rd., 10307 Hanoi, Vietnam, Vietnam 
[1] 
Guolin Yu. Global proper efficiency and vector optimization with conearcwise connected setvalued maps. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 3544. doi: 10.3934/naco.2016.6.35 
[2] 
Tran Ngoc Thang, Nguyen Thi Bach Kim. Outcome space algorithm for generalized multiplicative problems and optimization over the efficient set. Journal of Industrial & Management Optimization, 2016, 12 (4) : 14171433. doi: 10.3934/jimo.2016.12.1417 
[3] 
Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2017, 13 (5) : 00. doi: 10.3934/jimo.2019102 
[4] 
Chaabane Djamal, Pirlot Marc. A method for optimizing over the integer efficient set. Journal of Industrial & Management Optimization, 2010, 6 (4) : 811823. doi: 10.3934/jimo.2010.6.811 
[5] 
C. R. Chen, S. J. Li. Semicontinuity of the solution set map to a setvalued weak vector variational inequality. Journal of Industrial & Management Optimization, 2007, 3 (3) : 519528. doi: 10.3934/jimo.2007.3.519 
[6] 
A. Domoshnitsky. About maximum principles for one of the components of solution vector and stability for systems of linear delay differential equations. Conference Publications, 2011, 2011 (Special) : 373380. doi: 10.3934/proc.2011.2011.373 
[7] 
Guolin Yu. Topological properties of Henig globally efficient solutions of setvalued problems. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 309316. doi: 10.3934/naco.2014.4.309 
[8] 
Henri Bonnel, Ngoc Sang Pham. Nonsmooth optimization over the (weakly or properly) Pareto set of a linearquadratic multiobjective control problem: Explicit optimality conditions. Journal of Industrial & Management Optimization, 2011, 7 (4) : 789809. doi: 10.3934/jimo.2011.7.789 
[9] 
Alireza Ghaffari Hadigheh, Tamás Terlaky. Generalized support set invariancy sensitivity analysis in linear optimization. Journal of Industrial & Management Optimization, 2006, 2 (1) : 118. doi: 10.3934/jimo.2006.2.1 
[10] 
Behrouz Kheirfam, Kamal mirnia. Comments on ''Generalized support set invariancy sensitivity analysis in linear optimization''. Journal of Industrial & Management Optimization, 2008, 4 (3) : 611616. doi: 10.3934/jimo.2008.4.611 
[11] 
Yong Wang, Wanquan Liu, Guanglu Zhou. An efficient algorithm for nonconvex sparse optimization. Journal of Industrial & Management Optimization, 2019, 15 (4) : 20092021. doi: 10.3934/jimo.2018134 
[12] 
Ying Gao, Xinmin Yang, Jin Yang, Hong Yan. Scalarizations and Lagrange multipliers for approximate solutions in the vector optimization problems with setvalued maps. Journal of Industrial & Management Optimization, 2015, 11 (2) : 673683. doi: 10.3934/jimo.2015.11.673 
[13] 
Rui Qian, Rong Hu, YaPing Fang. Local smooth representation of solution sets in parametric linear fractional programming problems. Numerical Algebra, Control & Optimization, 2019, 9 (1) : 4552. doi: 10.3934/naco.2019004 
[14] 
Manuel FernándezMartínez. A real attractor non admitting a connected feasible open set. Discrete & Continuous Dynamical Systems  S, 2019, 12 (4&5) : 723725. doi: 10.3934/dcdss.2019046 
[15] 
Yu Zhang, Tao Chen. Minimax problems for setvalued mappings with set optimization. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 327340. doi: 10.3934/naco.2014.4.327 
[16] 
Savin Treanţă. Characterization of efficient solutions for a class of PDEconstrained vector control problems. Numerical Algebra, Control & Optimization, 2019, 0 (0) : 00. doi: 10.3934/naco.2019035 
[17] 
Jiawei Chen, Guangmin Wang, Xiaoqing Ou, Wenyan Zhang. Continuity of solutions mappings of parametric set optimization problems. Journal of Industrial & Management Optimization, 2017, 13 (5) : 112. doi: 10.3934/jimo.2018138 
[18] 
Nguyen Van Thoai. Decomposition branch and bound algorithm for optimization problems over efficient sets. Journal of Industrial & Management Optimization, 2008, 4 (4) : 647660. doi: 10.3934/jimo.2008.4.647 
[19] 
Lipu Zhang, Yinghong Xu, Zhengjing Jin. An efficient algorithm for convex quadratic semidefinite optimization. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 129144. doi: 10.3934/naco.2012.2.129 
[20] 
Sarah Ibri. An efficient distributed optimization and coordination protocol: Application to the emergency vehicle management. Journal of Industrial & Management Optimization, 2015, 11 (1) : 4163. doi: 10.3934/jimo.2015.11.41 
2018 Impact Factor: 1.025
Tools
Metrics
Other articles
by authors
[Back to Top]