October  2005, 1(4): 565-587. doi: 10.3934/jimo.2005.1.565

Gauss-Newton-on-manifold for pose estimation


National ICT Australia Ltd., Australia, Australian National University, Australia, Australia

Received  May 2005 Revised  August 2005 Published  October 2005

We consider the task of estimating the relative pose (position and orientation) between a 3D object and its projection on a 2D image plane from a set of point correspondences. Our approach is to formulate the task as an unconstrained optimization problem on the intersection of the special orthogonal group and a cone, and exploit as much as possible the geometry of the underlying parameter space. The optimization does not require Riemannian geometry. It involves successive parameterization of the constraint manifold and is based on Newton-type iterations in local parameter space. A direct proof of local quadratical convergence to the optimum is provided. A key feature of the proposed approach, not used in earlier studies, is an analytic geodesic search, alternating between gradient, Gauss, Newton and random directions, which ensures the escape from local minima and convergence to a global minimum without the need to reinitialize the algorithm. Indeed, for a prescribed number of iterations, the proposed algorithm achieves significantly lower pose estimation errors than earlier methods and it converges to a global minimum in typically 5--10 iterations.
Citation: Pei Yean Lee, John B Moore. Gauss-Newton-on-manifold for pose estimation. Journal of Industrial and Management Optimization, 2005, 1 (4) : 565-587. doi: 10.3934/jimo.2005.1.565

Hong-Yi Miao, Li Wang. Preconditioned inexact Newton-like method for large nonsymmetric eigenvalue problems. Numerical Algebra, Control and Optimization, 2021, 11 (4) : 677-685. doi: 10.3934/naco.2021012


Tibor Krisztin. A local unstable manifold for differential equations with state-dependent delay. Discrete and Continuous Dynamical Systems, 2003, 9 (4) : 993-1028. doi: 10.3934/dcds.2003.9.993


Shummin Nakayama, Yasushi Narushima, Hiroshi Yabe. Memoryless quasi-Newton methods based on spectral-scaling Broyden family for unconstrained optimization. Journal of Industrial and Management Optimization, 2019, 15 (4) : 1773-1793. doi: 10.3934/jimo.2018122


C. M. Groothedde, J. D. Mireles James. Parameterization method for unstable manifolds of delay differential equations. Journal of Computational Dynamics, 2017, 4 (1&2) : 21-70. doi: 10.3934/jcd.2017002


B. S. Goh, W. J. Leong, Z. Siri. Partial Newton methods for a system of equations. Numerical Algebra, Control and Optimization, 2013, 3 (3) : 463-469. doi: 10.3934/naco.2013.3.463


Qiumei Huang, Xiuxiu Xu, Hermann Brunner. Continuous Galerkin methods on quasi-geometric meshes for delay differential equations of pantograph type. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5423-5443. doi: 10.3934/dcds.2016039


Jun Huang, Yueyuan Zhang, Zhong Chen, Fei Sun. Interval estimation methods of fault estimation for discrete-time switched systems. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022113


Aurore Back, Emmanuel Frénod. Geometric two-scale convergence on manifold and applications to the Vlasov equation. Discrete and Continuous Dynamical Systems - S, 2015, 8 (1) : 223-241. doi: 10.3934/dcdss.2015.8.223


Dmitry Pozharskiy, Noah J. Wichrowski, Andrew B. Duncan, Grigorios A. Pavliotis, Ioannis G. Kevrekidis. Manifold learning for accelerating coarse-grained optimization. Journal of Computational Dynamics, 2020, 7 (2) : 511-536. doi: 10.3934/jcd.2020021


Inácio Andruski-Guimarães, Anselmo Chaves-Neto. Estimation in polytomous logistic model: Comparison of methods. Journal of Industrial and Management Optimization, 2009, 5 (2) : 239-252. doi: 10.3934/jimo.2009.5.239


Miguel Ángel Evangelista-Alvarado, José Crispín Ruíz-Pantaleón, Pablo Suárez-Serrato. On computational Poisson geometry II: Numerical methods. Journal of Computational Dynamics, 2021, 8 (3) : 273-307. doi: 10.3934/jcd.2021012


Domokos Szász. Algebro-geometric methods for hard ball systems. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 427-443. doi: 10.3934/dcds.2008.22.427


Sebastián J. Ferraro, David Iglesias-Ponte, D. Martín de Diego. Numerical and geometric aspects of the nonholonomic SHAKE and RATTLE methods. Conference Publications, 2009, 2009 (Special) : 220-229. doi: 10.3934/proc.2009.2009.220


Ulrike Kant, Werner M. Seiler. Singularities in the geometric theory of differential equations. Conference Publications, 2011, 2011 (Special) : 784-793. doi: 10.3934/proc.2011.2011.784


Zohre Aminifard, Saman Babaie-Kafaki. Diagonally scaled memoryless quasi–Newton methods with application to compressed sensing. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021191


Dmitri E. Kvasov, Yaroslav D. Sergeyev. Univariate geometric Lipschitz global optimization algorithms. Numerical Algebra, Control and Optimization, 2012, 2 (1) : 69-90. doi: 10.3934/naco.2012.2.69


Cheng-Dar Liou. Note on "Cost analysis of the M/M/R machine repair problem with second optional repair: Newton-Quasi method". Journal of Industrial and Management Optimization, 2012, 8 (3) : 727-732. doi: 10.3934/jimo.2012.8.727


Kuo-Hsiung Wang, Chuen-Wen Liao, Tseng-Chang Yen. Cost analysis of the M/M/R machine repair problem with second optional repair: Newton-Quasi method. Journal of Industrial and Management Optimization, 2010, 6 (1) : 197-207. doi: 10.3934/jimo.2010.6.197


Carlangelo Liverani. On the work and vision of Dmitry Dolgopyat. Journal of Modern Dynamics, 2010, 4 (2) : 211-225. doi: 10.3934/jmd.2010.4.211


Robert J. McCann. A glimpse into the differential topology and geometry of optimal transport. Discrete and Continuous Dynamical Systems, 2014, 34 (4) : 1605-1621. doi: 10.3934/dcds.2014.34.1605

2021 Impact Factor: 1.411


  • PDF downloads (149)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]