# American Institute of Mathematical Sciences

October  2005, 1(4): 565-587. doi: 10.3934/jimo.2005.1.565

## Gauss-Newton-on-manifold for pose estimation

 1 National ICT Australia Ltd., Australia, Australian National University, Australia, Australia

Received  May 2005 Revised  August 2005 Published  October 2005

We consider the task of estimating the relative pose (position and orientation) between a 3D object and its projection on a 2D image plane from a set of point correspondences. Our approach is to formulate the task as an unconstrained optimization problem on the intersection of the special orthogonal group and a cone, and exploit as much as possible the geometry of the underlying parameter space. The optimization does not require Riemannian geometry. It involves successive parameterization of the constraint manifold and is based on Newton-type iterations in local parameter space. A direct proof of local quadratical convergence to the optimum is provided. A key feature of the proposed approach, not used in earlier studies, is an analytic geodesic search, alternating between gradient, Gauss, Newton and random directions, which ensures the escape from local minima and convergence to a global minimum without the need to reinitialize the algorithm. Indeed, for a prescribed number of iterations, the proposed algorithm achieves significantly lower pose estimation errors than earlier methods and it converges to a global minimum in typically 5--10 iterations.
Citation: Pei Yean Lee, John B Moore. Gauss-Newton-on-manifold for pose estimation. Journal of Industrial & Management Optimization, 2005, 1 (4) : 565-587. doi: 10.3934/jimo.2005.1.565
 [1] Hong-Yi Miao, Li Wang. Preconditioned inexact Newton-like method for large nonsymmetric eigenvalue problems. Numerical Algebra, Control & Optimization, 2021, 11 (4) : 677-685. doi: 10.3934/naco.2021012 [2] Tibor Krisztin. A local unstable manifold for differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems, 2003, 9 (4) : 993-1028. doi: 10.3934/dcds.2003.9.993 [3] Shummin Nakayama, Yasushi Narushima, Hiroshi Yabe. Memoryless quasi-Newton methods based on spectral-scaling Broyden family for unconstrained optimization. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1773-1793. doi: 10.3934/jimo.2018122 [4] C. M. Groothedde, J. D. Mireles James. Parameterization method for unstable manifolds of delay differential equations. Journal of Computational Dynamics, 2017, 4 (1&2) : 21-70. doi: 10.3934/jcd.2017002 [5] B. S. Goh, W. J. Leong, Z. Siri. Partial Newton methods for a system of equations. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 463-469. doi: 10.3934/naco.2013.3.463 [6] Qiumei Huang, Xiuxiu Xu, Hermann Brunner. Continuous Galerkin methods on quasi-geometric meshes for delay differential equations of pantograph type. Discrete & Continuous Dynamical Systems, 2016, 36 (10) : 5423-5443. doi: 10.3934/dcds.2016039 [7] Dmitry Pozharskiy, Noah J. Wichrowski, Andrew B. Duncan, Grigorios A. Pavliotis, Ioannis G. Kevrekidis. Manifold learning for accelerating coarse-grained optimization. Journal of Computational Dynamics, 2020, 7 (2) : 511-536. doi: 10.3934/jcd.2020021 [8] Aurore Back, Emmanuel Frénod. Geometric two-scale convergence on manifold and applications to the Vlasov equation. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : 223-241. doi: 10.3934/dcdss.2015.8.223 [9] Inácio Andruski-Guimarães, Anselmo Chaves-Neto. Estimation in polytomous logistic model: Comparison of methods. Journal of Industrial & Management Optimization, 2009, 5 (2) : 239-252. doi: 10.3934/jimo.2009.5.239 [10] Miguel Ángel Evangelista-Alvarado, José Crispín Ruíz-Pantaleón, Pablo Suárez-Serrato. On computational Poisson geometry II: Numerical methods. Journal of Computational Dynamics, 2021, 8 (3) : 273-307. doi: 10.3934/jcd.2021012 [11] Domokos Szász. Algebro-geometric methods for hard ball systems. Discrete & Continuous Dynamical Systems, 2008, 22 (1&2) : 427-443. doi: 10.3934/dcds.2008.22.427 [12] Sebastián J. Ferraro, David Iglesias-Ponte, D. Martín de Diego. Numerical and geometric aspects of the nonholonomic SHAKE and RATTLE methods. Conference Publications, 2009, 2009 (Special) : 220-229. doi: 10.3934/proc.2009.2009.220 [13] Ulrike Kant, Werner M. Seiler. Singularities in the geometric theory of differential equations. Conference Publications, 2011, 2011 (Special) : 784-793. doi: 10.3934/proc.2011.2011.784 [14] Dmitri E. Kvasov, Yaroslav D. Sergeyev. Univariate geometric Lipschitz global optimization algorithms. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 69-90. doi: 10.3934/naco.2012.2.69 [15] Zohre Aminifard, Saman Babaie-Kafaki. Diagonally scaled memoryless quasi–Newton methods with application to compressed sensing. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021191 [16] Cheng-Dar Liou. Note on "Cost analysis of the M/M/R machine repair problem with second optional repair: Newton-Quasi method". Journal of Industrial & Management Optimization, 2012, 8 (3) : 727-732. doi: 10.3934/jimo.2012.8.727 [17] Kuo-Hsiung Wang, Chuen-Wen Liao, Tseng-Chang Yen. Cost analysis of the M/M/R machine repair problem with second optional repair: Newton-Quasi method. Journal of Industrial & Management Optimization, 2010, 6 (1) : 197-207. doi: 10.3934/jimo.2010.6.197 [18] Robert J. McCann. A glimpse into the differential topology and geometry of optimal transport. Discrete & Continuous Dynamical Systems, 2014, 34 (4) : 1605-1621. doi: 10.3934/dcds.2014.34.1605 [19] Carlangelo Liverani. On the work and vision of Dmitry Dolgopyat. Journal of Modern Dynamics, 2010, 4 (2) : 211-225. doi: 10.3934/jmd.2010.4.211 [20] Huan Gao, Yu-Hong Dai, Xiao-Jiao Tong. Barzilai-Borwein-like methods for the extreme eigenvalue problem. Journal of Industrial & Management Optimization, 2015, 11 (3) : 999-1019. doi: 10.3934/jimo.2015.11.999

2020 Impact Factor: 1.801