
Previous Article
Some remarks on a successive projection sequence
 JIMO Home
 This Issue

Next Article
A comparison of simple tests for accuracy of approximate solutions to nonlinear systems with uncertain data
Global impulsive optimal control computation
1.  Department of Mathematics, Chongqing Normal University, Chongqing, China 
2.  Department of Mathematics and Statistics, Curtin University of Technology, Perth 
[1] 
Canghua Jiang, Zhiqiang Guo, Xin Li, Hai Wang, Ming Yu. An efficient adjoint computational method based on lifted IRK integrator and exact penalty function for optimal control problems involving continuous inequality constraints. Discrete & Continuous Dynamical Systems  S, 2018, 0 (0) : 00. doi: 10.3934/dcdss.2020109 
[2] 
Jérome Lohéac, JeanFrançois Scheid. Time optimal control for a nonholonomic system with state constraint. Mathematical Control & Related Fields, 2013, 3 (2) : 185208. doi: 10.3934/mcrf.2013.3.185 
[3] 
Alexander Arguchintsev, Vasilisa Poplevko. An optimal control problem by parabolic equation with boundary smooth control and an integral constraint. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 193202. doi: 10.3934/naco.2018011 
[4] 
Sofia O. Lopes, Fernando A. C. C. Fontes, Maria do Rosário de Pinho. On constraint qualifications for nondegenerate necessary conditions of optimality applied to optimal control problems. Discrete & Continuous Dynamical Systems  A, 2011, 29 (2) : 559575. doi: 10.3934/dcds.2011.29.559 
[5] 
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399413. doi: 10.3934/jimo.2007.3.399 
[6] 
Changjun Yu, Kok Lay Teo, Liansheng Zhang, Yanqin Bai. A new exact penalty function method for continuous inequality constrained optimization problems. Journal of Industrial & Management Optimization, 2010, 6 (4) : 895910. doi: 10.3934/jimo.2010.6.895 
[7] 
Nguyen Huy Chieu, JenChih Yao. Subgradients of the optimal value function in a parametric discrete optimal control problem. Journal of Industrial & Management Optimization, 2010, 6 (2) : 401410. doi: 10.3934/jimo.2010.6.401 
[8] 
Shihchung Chiang. Numerical optimal unbounded control with a singular integrodifferential equation as a constraint. Conference Publications, 2013, 2013 (special) : 129137. doi: 10.3934/proc.2013.2013.129 
[9] 
HeeDae Kwon, Jeehyun Lee, SungDae Yang. Eigenseries solutions to optimal control problem and controllability problems on hyperbolic PDEs. Discrete & Continuous Dynamical Systems  B, 2010, 13 (2) : 305325. doi: 10.3934/dcdsb.2010.13.305 
[10] 
Jingzhen Liu, KaFai Cedric Yiu, Kok Lay Teo. Optimal investmentconsumption problem with constraint. Journal of Industrial & Management Optimization, 2013, 9 (4) : 743768. doi: 10.3934/jimo.2013.9.743 
[11] 
Changjun Yu, Kok Lay Teo, Liansheng Zhang, Yanqin Bai. On a refinement of the convergence analysis for the new exact penalty function method for continuous inequality constrained optimization problem. Journal of Industrial & Management Optimization, 2012, 8 (2) : 485491. doi: 10.3934/jimo.2012.8.485 
[12] 
Vincenzo Basco, Piermarco Cannarsa, Hélène Frankowska. Necessary conditions for infinite horizon optimal control problems with state constraints. Mathematical Control & Related Fields, 2018, 8 (3&4) : 535555. doi: 10.3934/mcrf.2018022 
[13] 
M. DelgadoTéllez, Alberto Ibort. On the geometry and topology of singular optimal control problems and their solutions. Conference Publications, 2003, 2003 (Special) : 223233. doi: 10.3934/proc.2003.2003.223 
[14] 
Ryan Loxton, Qun Lin, Volker Rehbock, Kok Lay Teo. Control parameterization for optimal control problems with continuous inequality constraints: New convergence results. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 571599. doi: 10.3934/naco.2012.2.571 
[15] 
Bin Li, Xiaolong Guo, Xiaodong Zeng, Songyi Dian, Minhua Guo. An optimal pid tuning method for a singlelink manipulator based on the control parametrization technique. Discrete & Continuous Dynamical Systems  S, 2018, 0 (0) : 00. doi: 10.3934/dcdss.2020107 
[16] 
Kazimierz Malanowski, Helmut Maurer. Sensitivity analysis for state constrained optimal control problems. Discrete & Continuous Dynamical Systems  A, 1998, 4 (2) : 241272. doi: 10.3934/dcds.1998.4.241 
[17] 
Enkhbat Rentsen, J. Zhou, K. L. Teo. A global optimization approach to fractional optimal control. Journal of Industrial & Management Optimization, 2016, 12 (1) : 7382. doi: 10.3934/jimo.2016.12.73 
[18] 
Liuyang Yuan, Zhongping Wan, Qiuhua Tang. A criterion for an approximation global optimal solution based on the filled functions. Journal of Industrial & Management Optimization, 2016, 12 (1) : 375387. doi: 10.3934/jimo.2016.12.375 
[19] 
Huaiqiang Yu, Bin Liu. Pontryagin's principle for local solutions of optimal control governed by the 2D NavierStokes equations with mixed controlstate constraints. Mathematical Control & Related Fields, 2012, 2 (1) : 6180. doi: 10.3934/mcrf.2012.2.61 
[20] 
HangChin Lai, JinChirng Lee, ShuhJye Chern. A variational problem and optimal control. Journal of Industrial & Management Optimization, 2011, 7 (4) : 967975. doi: 10.3934/jimo.2011.7.967 
2018 Impact Factor: 1.025
Tools
Metrics
Other articles
by authors
[Back to Top]