January  2007, 3(1): 155-164. doi: 10.3934/jimo.2007.3.155

Optimal Adaptive Regulation for Nonlinear Systems with Observation Noise

1. 

Institute of Systems Science, AMSS, Chinese Academy of Sciences, 55, Zhongguancundonglu, Beijing, 100080, P. R., China, China

Received  July 2006 Revised  October 2006 Published  January 2007

The adaptive regulation is considered for a class of nonlinear systems including the Hammerstein systems and Wiener systems as special cases. The observations are corrupted by noise. By using the intrinsic stability of the system a direct adaptive regulation control is designed with the help of the stochastic approximation (SA) method, and its optimality is proved. A numerical example is provided.
Citation: Xiao-Li Hu, Han-Fu Chen. Optimal Adaptive Regulation for Nonlinear Systems with Observation Noise. Journal of Industrial & Management Optimization, 2007, 3 (1) : 155-164. doi: 10.3934/jimo.2007.3.155
[1]

Sie Long Kek, Mohd Ismail Abd Aziz. Output regulation for discrete-time nonlinear stochastic optimal control problems with model-reality differences. Numerical Algebra, Control & Optimization, 2015, 5 (3) : 275-288. doi: 10.3934/naco.2015.5.275

[2]

Qi Yang, Lei Wang, Enmin Feng, Hongchao Yin, Zhilong Xiu. Identification and robustness analysis of nonlinear hybrid dynamical system of genetic regulation in continuous culture. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-21. doi: 10.3934/jimo.2018168

[3]

Zhihua Zhang, Naoki Saito. PHLST with adaptive tiling and its application to antarctic remote sensing image approximation. Inverse Problems & Imaging, 2014, 8 (1) : 321-337. doi: 10.3934/ipi.2014.8.321

[4]

Margherita Carletti, Matteo Montani, Valentina Meschini, Marzia Bianchi, Lucia Radici. Stochastic modelling of PTEN regulation in brain tumors: A model for glioblastoma multiforme. Mathematical Biosciences & Engineering, 2015, 12 (5) : 965-981. doi: 10.3934/mbe.2015.12.965

[5]

Jeongsim Kim, Bara Kim. Stability of a cyclic polling system with an adaptive mechanism. Journal of Industrial & Management Optimization, 2015, 11 (3) : 763-777. doi: 10.3934/jimo.2015.11.763

[6]

Tayel Dabbous. Adaptive control of nonlinear systems using fuzzy systems. Journal of Industrial & Management Optimization, 2010, 6 (4) : 861-880. doi: 10.3934/jimo.2010.6.861

[7]

Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393

[8]

Cheng-Zhong Xu, Gauthier Sallet. Multivariable boundary PI control and regulation of a fluid flow system. Mathematical Control & Related Fields, 2014, 4 (4) : 501-520. doi: 10.3934/mcrf.2014.4.501

[9]

Nikolai Dokuchaev. On strong causal binomial approximation for stochastic processes. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1549-1562. doi: 10.3934/dcdsb.2014.19.1549

[10]

Siu-Long Lei. Adaptive method for spike solutions of Gierer-Meinhardt system on irregular domain. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 651-668. doi: 10.3934/dcdsb.2011.15.651

[11]

R.G. Duran, J.I. Etcheverry, J.D. Rossi. Numerical approximation of a parabolic problem with a nonlinear boundary condition. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 497-506. doi: 10.3934/dcds.1998.4.497

[12]

Razvan C. Fetecau, Mitchell Kovacic, Ihsan Topaloglu. Swarming in domains with boundaries: Approximation and regularization by nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1815-1842. doi: 10.3934/dcdsb.2018238

[13]

Ruoxia Li, Huaiqin Wu, Xiaowei Zhang, Rong Yao. Adaptive projective synchronization of memristive neural networks with time-varying delays and stochastic perturbation. Mathematical Control & Related Fields, 2015, 5 (4) : 827-844. doi: 10.3934/mcrf.2015.5.827

[14]

Christopher Rackauckas, Qing Nie. Adaptive methods for stochastic differential equations via natural embeddings and rejection sampling with memory. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2731-2761. doi: 10.3934/dcdsb.2017133

[15]

Mou-Hsiung Chang, Tao Pang, Moustapha Pemy. Finite difference approximation for stochastic optimal stopping problems with delays. Journal of Industrial & Management Optimization, 2008, 4 (2) : 227-246. doi: 10.3934/jimo.2008.4.227

[16]

Xiaojun Chen, Guihua Lin. CVaR-based formulation and approximation method for stochastic variational inequalities. Numerical Algebra, Control & Optimization, 2011, 1 (1) : 35-48. doi: 10.3934/naco.2011.1.35

[17]

Yanfeng Guo, Jinqiao Duan, Donglong Li. Approximation of random invariant manifolds for a stochastic Swift-Hohenberg equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1701-1715. doi: 10.3934/dcdss.2016071

[18]

Ralf Banisch, Carsten Hartmann. A sparse Markov chain approximation of LQ-type stochastic control problems. Mathematical Control & Related Fields, 2016, 6 (3) : 363-389. doi: 10.3934/mcrf.2016007

[19]

Hui-Qiang Ma, Nan-Jing Huang. Neural network smoothing approximation method for stochastic variational inequality problems. Journal of Industrial & Management Optimization, 2015, 11 (2) : 645-660. doi: 10.3934/jimo.2015.11.645

[20]

Yongchao Liu, Hailin Sun, Huifu Xu. An approximation scheme for stochastic programs with second order dominance constraints. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 473-490. doi: 10.3934/naco.2016021

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]