July  2007, 3(3): 489-501. doi: 10.3934/jimo.2007.3.489

Optimization of composition and processing parameters for alloy development: a statistical model-based approach


Department of Industrial and Systems Engineering, 303 Weil Hall, P.O. Box 116595, Gainesville, FL 32611-6595, United States, United States, United States


Institute for Defense Analysis, 4850 Mark Center Drive, Alexandria, VA 22311-1882, United States


Department of Statistics, 102 Griffin-Floyd Hall, P.O. Box 118545, Gainesville, FL 32611-8545, United States

Received  March 2005 Revised  January 2007 Published  July 2007

We describe the second step in a two-step approach for the development of new and improved alloys. The first step, proposed by Golodnikov et al [3], entails using experimental data to statistically model tensile yield strength and the 20th percentile of the impact toughness, as a function of alloy composition and processing variables. We demonstrate how the models can be used in the second step to search for combinations of the variables in small neighborhoods of the data space, that result in alloys having optimal levels of the properties modeled. The optimization is performed via the efficient frontier methodology. Such an approach, based on validated statistical models, can lead to a substantial reduction in the experimental effort and cost associated with alloy development. The procedure can also be used at various stages of the experimental program, to indicate what changes should be made in the composition and processing variables in order to shift the alloy development process toward the efficient frontier. Data from these more refined experiments can then be used to adjust the model and improve the second step, in an iterative search for superior alloys.
Citation: Alexandr Golodnikov, Stan Uryasev, Grigoriy Zrazhevsky, Yevgeny Macheret, A. Alexandre Trindade. Optimization of composition and processing parameters for alloy development: a statistical model-based approach. Journal of Industrial & Management Optimization, 2007, 3 (3) : 489-501. doi: 10.3934/jimo.2007.3.489

Zhigui Lin, Yinan Zhao, Peng Zhou. The infected frontier in an SEIR epidemic model with infinite delay. Discrete and Continuous Dynamical Systems - Series B, 2013, 18 (9) : 2355-2376. doi: 10.3934/dcdsb.2013.18.2355


Shaoyong Lai, Qichang Xie. A selection problem for a constrained linear regression model. Journal of Industrial & Management Optimization, 2008, 4 (4) : 757-766. doi: 10.3934/jimo.2008.4.757


K. A. Ariyawansa, Leonid Berlyand, Alexander Panchenko. A network model of geometrically constrained deformations of granular materials. Networks & Heterogeneous Media, 2008, 3 (1) : 125-148. doi: 10.3934/nhm.2008.3.125


Xinxin Tan, Shujuan Li, Sisi Liu, Zhiwei Zhao, Lisa Huang, Jiatai Gang. Dynamic simulation of a SEIQR-V epidemic model based on cellular automata. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 327-337. doi: 10.3934/naco.2015.5.327


Toyohiko Aiki, Kota Kumazaki. Uniqueness of solutions to a mathematical model describing moisture transport in concrete materials. Networks & Heterogeneous Media, 2014, 9 (4) : 683-707. doi: 10.3934/nhm.2014.9.683


Michela Eleuteri, Luca Lussardi, Ulisse Stefanelli. A rate-independent model for permanent inelastic effects in shape memory materials. Networks & Heterogeneous Media, 2011, 6 (1) : 145-165. doi: 10.3934/nhm.2011.6.145


Mircea Bîrsan, Holm Altenbach. On the Cosserat model for thin rods made of thermoelastic materials with voids. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1473-1485. doi: 10.3934/dcdss.2013.6.1473


Shaojun Zhang, Zhong Wan. Polymorphic uncertain nonlinear programming model and algorithm for maximizing the fatigue life of V-belt drive. Journal of Industrial & Management Optimization, 2012, 8 (2) : 493-505. doi: 10.3934/jimo.2012.8.493


Kolade M. Owolabi, Kailash C. Patidar, Albert Shikongo. Efficient numerical method for a model arising in biological stoichiometry of tumour dynamics. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 591-613. doi: 10.3934/dcdss.2019038


Jiao Li, Jinyong Ying. A simple and efficient technique to accelerate the computation of a nonlocal dielectric model for electrostatics of biomolecule. Journal of Industrial & Management Optimization, 2020, 16 (1) : 357-369. doi: 10.3934/jimo.2018155


Michela Eleuteri, Luca Lussardi. Thermal control of a rate-independent model for permanent inelastic effects in shape memory materials. Evolution Equations & Control Theory, 2014, 3 (3) : 411-427. doi: 10.3934/eect.2014.3.411


Theodore Tachim Medjo. Pullback $ \mathbb{V}-$attractor of a three dimensional globally modified two-phase flow model. Discrete & Continuous Dynamical Systems, 2018, 38 (4) : 2141-2169. doi: 10.3934/dcds.2018088


Paolo Paoletti. Acceleration waves in complex materials. Discrete and Continuous Dynamical Systems - Series B, 2012, 17 (2) : 637-659. doi: 10.3934/dcdsb.2012.17.637


Edward Della Torre, Lawrence H. Bennett. Analysis and simulations of magnetic materials. Conference Publications, 2005, 2005 (Special) : 854-861. doi: 10.3934/proc.2005.2005.854


Behzad Ghanbari, Devendra Kumar, Jagdev Singh. An efficient numerical method for fractional model of allelopathic stimulatory phytoplankton species with Mittag-Leffler law. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3577-3587. doi: 10.3934/dcdss.2020428


Zsolt Páles, Vera Zeidan. $V$-Jacobian and $V$-co-Jacobian for Lipschitzian maps. Discrete & Continuous Dynamical Systems, 2011, 29 (2) : 623-646. doi: 10.3934/dcds.2011.29.623


Pietro Baldi. Quasi-periodic solutions of the equation $v_{t t} - v_{x x} +v^3 = f(v)$. Discrete & Continuous Dynamical Systems, 2006, 15 (3) : 883-903. doi: 10.3934/dcds.2006.15.883


Burcu Gürbüz. A computational approximation for the solution of retarded functional differential equations and their applications to science and engineering. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021069


Andreas Chirstmann, Qiang Wu, Ding-Xuan Zhou. Preface to the special issue on analysis in machine learning and data science. Communications on Pure & Applied Analysis, 2020, 19 (8) : i-iii. doi: 10.3934/cpaa.2020171


Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

2020 Impact Factor: 1.801


  • PDF downloads (40)
  • HTML views (0)
  • Cited by (2)

[Back to Top]