July  2007, 3(3): 529-542. doi: 10.3934/jimo.2007.3.529

Spline function smooth support vector machine for classification

1. 

School of Applied Mathematics, University of Electronic Science and Technology of China, Chengdu, 610054, China, China

2. 

Accounting & Information Systems, Virginia Polytechnic Institute and State University, VA, 24061, United States

Received  September 2006 Revised  May 2007 Published  July 2007

Support vector machine (SVM) is a very popular method for binary data classification in data mining (machine learning). Since the objective function of the unconstrained SVM model is a non-smooth function, a lot of good optimal algorithms can't be used to find the solution. In order to overcome this model's non-smooth property, Lee and Mangasarian proposed smooth support vector machine (SSVM) in 2001. Later, Yuan et al. proposed the polynomial smooth support vector machine (PSSVM) in 2005. In this paper, a three-order spline function is used to smooth the objective function and a three-order spline smooth support vector machine model (TSSVM) is obtained. By analyzing the performance of the smooth function, the smooth precision has been improved obviously. Moreover, BFGS and Newton-Armijo algorithms are used to solve the TSSVM model. Our experimental results prove that the TSSVM model has better classification performance than other competitive baselines.
Citation: Yubo Yuan, Weiguo Fan, Dongmei Pu. Spline function smooth support vector machine for classification. Journal of Industrial & Management Optimization, 2007, 3 (3) : 529-542. doi: 10.3934/jimo.2007.3.529
[1]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[2]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[3]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[4]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[5]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[6]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[7]

Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015

[8]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[9]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (103)
  • HTML views (0)
  • Cited by (15)

Other articles
by authors

[Back to Top]