• Previous Article
    A quadratically convergent method for minimizing a sum of Euclidean norms with linear constraints
  • JIMO Home
  • This Issue
  • Next Article
    On the partial path protection scheme for WDM optical networks and polynomial time computability of primary and secondary paths
October  2007, 3(4): 645-654. doi: 10.3934/jimo.2007.3.645

A relaxed extragradient-like method for a class of constrained optimization problem

1. 

Institute of Operations Research, Qufu Normal University, Shandong, 276826, China

2. 

Department of Applied Mathematics, Beijing Jiaotong University, Beijing, 100044, P.R., China

Received  September 2006 Revised  April 2007 Published  October 2007

This paper presents a relaxed extragradient-like method for solving the convexly constrained minimization with optimal value zero. The method is a combination of the extragradient-like algorithm and a halfspace-relaxation technique to the constrained set of the problem. Each iteration of the proposed method consists of the projection onto a halfspace containing the given closed convex set. The method is implemented very easily and is proven to be fully convergent to the solution. Preliminary computational experience is also reported.
Citation: Biao Qu, Naihua Xiu. A relaxed extragradient-like method for a class of constrained optimization problem. Journal of Industrial & Management Optimization, 2007, 3 (4) : 645-654. doi: 10.3934/jimo.2007.3.645
[1]

Luchuan Ceng, Qamrul Hasan Ansari, Jen-Chih Yao. Extragradient-projection method for solving constrained convex minimization problems. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 341-359. doi: 10.3934/naco.2011.1.341

[2]

Yuan Shen, Wenxing Zhang, Bingsheng He. Relaxed augmented Lagrangian-based proximal point algorithms for convex optimization with linear constraints. Journal of Industrial & Management Optimization, 2014, 10 (3) : 743-759. doi: 10.3934/jimo.2014.10.743

[3]

Kareem T. Elgindy. Optimal control of a parabolic distributed parameter system using a fully exponentially convergent barycentric shifted gegenbauer integral pseudospectral method. Journal of Industrial & Management Optimization, 2018, 14 (2) : 473-496. doi: 10.3934/jimo.2017056

[4]

Igor Griva, Roman A. Polyak. Proximal point nonlinear rescaling method for convex optimization. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 283-299. doi: 10.3934/naco.2011.1.283

[5]

Nobuko Sagara, Masao Fukushima. trust region method for nonsmooth convex optimization. Journal of Industrial & Management Optimization, 2005, 1 (2) : 171-180. doi: 10.3934/jimo.2005.1.171

[6]

Dan Li, Li-Ping Pang, Fang-Fang Guo, Zun-Quan Xia. An alternating linearization method with inexact data for bilevel nonsmooth convex optimization. Journal of Industrial & Management Optimization, 2014, 10 (3) : 859-869. doi: 10.3934/jimo.2014.10.859

[7]

Foxiang Liu, Lingling Xu, Yuehong Sun, Deren Han. A proximal alternating direction method for multi-block coupled convex optimization. Journal of Industrial & Management Optimization, 2019, 15 (2) : 723-737. doi: 10.3934/jimo.2018067

[8]

Yekini Shehu, Olaniyi Iyiola. On a modified extragradient method for variational inequality problem with application to industrial electricity production. Journal of Industrial & Management Optimization, 2019, 15 (1) : 319-342. doi: 10.3934/jimo.2018045

[9]

Ahmet Sahiner, Nurullah Yilmaz, Gulden Kapusuz. A novel modeling and smoothing technique in global optimization. Journal of Industrial & Management Optimization, 2019, 15 (1) : 113-130. doi: 10.3934/jimo.2018035

[10]

Tomáš Roubíček. On certain convex compactifications for relaxation in evolution problems. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 467-482. doi: 10.3934/dcdss.2011.4.467

[11]

Jean-François Babadjian, Clément Mifsud, Nicolas Seguin. Relaxation approximation of Friedrichs' systems under convex constraints. Networks & Heterogeneous Media, 2016, 11 (2) : 223-237. doi: 10.3934/nhm.2016.11.223

[12]

Murat Adivar, Shu-Cherng Fang. Convex optimization on mixed domains. Journal of Industrial & Management Optimization, 2012, 8 (1) : 189-227. doi: 10.3934/jimo.2012.8.189

[13]

Yigui Ou, Yuanwen Liu. A memory gradient method based on the nonmonotone technique. Journal of Industrial & Management Optimization, 2017, 13 (2) : 857-872. doi: 10.3934/jimo.2016050

[14]

Guanglu Zhou. A quadratically convergent method for minimizing a sum of Euclidean norms with linear constraints. Journal of Industrial & Management Optimization, 2007, 3 (4) : 655-670. doi: 10.3934/jimo.2007.3.655

[15]

Zhichuan Zhu, Bo Yu, Li Yang. Globally convergent homotopy method for designing piecewise linear deterministic contractual function. Journal of Industrial & Management Optimization, 2014, 10 (3) : 717-741. doi: 10.3934/jimo.2014.10.717

[16]

Vadim Azhmyakov. An approach to controlled mechanical systems based on the multiobjective optimization technique. Journal of Industrial & Management Optimization, 2008, 4 (4) : 697-712. doi: 10.3934/jimo.2008.4.697

[17]

Ruiliang Zhang, Xavier Bresson, Tony F. Chan, Xue-Cheng Tai. Four color theorem and convex relaxation for image segmentation with any number of regions. Inverse Problems & Imaging, 2013, 7 (3) : 1099-1113. doi: 10.3934/ipi.2013.7.1099

[18]

Anulekha Dhara, Aparna Mehra. Conjugate duality for generalized convex optimization problems. Journal of Industrial & Management Optimization, 2007, 3 (3) : 415-427. doi: 10.3934/jimo.2007.3.415

[19]

Adil Bagirov, Sona Taheri, Soodabeh Asadi. A difference of convex optimization algorithm for piecewise linear regression. Journal of Industrial & Management Optimization, 2019, 15 (2) : 909-932. doi: 10.3934/jimo.2018077

[20]

Zhongliang Deng, Enwen Hu. Error minimization with global optimization for difference of convex functions. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1027-1033. doi: 10.3934/dcdss.2019070

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]