• Previous Article
    Errata to:''Optimal preemptive online scheduling to minimize $l_{p}$ norm on two processors''[Journal of Industrial and Management Optimization, 1(3) (2005), 345-351.]
  • JIMO Home
  • This Issue
  • Next Article
    Well-posedness for parametric vector equilibrium problems with applications
April  2008, 4(2): 329-337. doi: 10.3934/jimo.2008.4.329

An extended lifetime measure for telecommunication network

1. 

Centre for Informatics and Applied Optimization, School of Information Technology and Mathematical Sciences, University of Ballarat, Victoria 3353, Australia, Australia, Australia

Received  June 2007 Revised  January 2008 Published  April 2008

A new measure for network performance evaluation called topology lifetime was introduced in [4, 5]. This measure is based on the notion of unexpected traffic growth and can be used for comparison of topologies. We discuss some advantages and disadvantages of the approach of [4] and suggest some modifications to this approach. In particular we discuss how to evaluate the influence of a subgraph to the lifetime measure and introduce the notion of the order of a path. This notion is useful if we consider a possible extension to the set of working paths in order to support the traffic for the time that is needed for installation of new facilities.
Citation: Zari Dzalilov, Iradj Ouveysi, Alexander Rubinov. An extended lifetime measure for telecommunication network. Journal of Industrial and Management Optimization, 2008, 4 (2) : 329-337. doi: 10.3934/jimo.2008.4.329
[1]

Ling Zhang, Xiaoqi Sun. Stability analysis of time-varying delay neural network for convex quadratic programming with equality constraints and inequality constraints. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022035

[2]

Mahmoud Ameri, Armin Jarrahi. An executive model for network-level pavement maintenance and rehabilitation planning based on linear integer programming. Journal of Industrial and Management Optimization, 2020, 16 (2) : 795-811. doi: 10.3934/jimo.2018179

[3]

Shi'an Wang, N. U. Ahmed. Optimum management of the network of city bus routes based on a stochastic dynamic model. Journal of Industrial and Management Optimization, 2019, 15 (2) : 619-631. doi: 10.3934/jimo.2018061

[4]

Azam Moradi, Jafar Razmi, Reza Babazadeh, Ali Sabbaghnia. An integrated Principal Component Analysis and multi-objective mathematical programming approach to agile supply chain network design under uncertainty. Journal of Industrial and Management Optimization, 2019, 15 (2) : 855-879. doi: 10.3934/jimo.2018074

[5]

Ángela Jiménez-Casas, Aníbal Rodríguez-Bernal. Linear model of traffic flow in an isolated network. Conference Publications, 2015, 2015 (special) : 670-677. doi: 10.3934/proc.2015.0670

[6]

Changzhi Wu, Chaojie Li, Qiang Long. A DC programming approach for sensor network localization with uncertainties in anchor positions. Journal of Industrial and Management Optimization, 2014, 10 (3) : 817-826. doi: 10.3934/jimo.2014.10.817

[7]

Mark G. Burch, Karly A. Jacobsen, Joseph H. Tien, Grzegorz A. Rempała. Network-based analysis of a small Ebola outbreak. Mathematical Biosciences & Engineering, 2017, 14 (1) : 67-77. doi: 10.3934/mbe.2017005

[8]

Chun Zong, Gen Qi Xu. Observability and controllability analysis of blood flow network. Mathematical Control and Related Fields, 2014, 4 (4) : 521-554. doi: 10.3934/mcrf.2014.4.521

[9]

Fatiha Alabau-Boussouira, Vincent Perrollaz, Lionel Rosier. Finite-time stabilization of a network of strings. Mathematical Control and Related Fields, 2015, 5 (4) : 721-742. doi: 10.3934/mcrf.2015.5.721

[10]

Ruotian Gao, Wenxun Xing. Robust sensitivity analysis for linear programming with ellipsoidal perturbation. Journal of Industrial and Management Optimization, 2020, 16 (4) : 2029-2044. doi: 10.3934/jimo.2019041

[11]

Dengfeng Sun, Issam S. Strub, Alexandre M. Bayen. Comparison of the performance of four Eulerian network flow models for strategic air traffic management. Networks and Heterogeneous Media, 2007, 2 (4) : 569-595. doi: 10.3934/nhm.2007.2.569

[12]

Jose-Luis Roca-Gonzalez. Designing dynamical systems for security and defence network knowledge management. A case of study: Airport bird control falconers organizations. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1311-1329. doi: 10.3934/dcdss.2015.8.1311

[13]

Yongtao Peng, Dan Xu, Eleonora Veglianti, Elisabetta Magnaghi. A product service supply chain network equilibrium considering risk management in the context of COVID-19 pandemic. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022094

[14]

Artyom Nahapetyan, Panos M. Pardalos. A bilinear relaxation based algorithm for concave piecewise linear network flow problems. Journal of Industrial and Management Optimization, 2007, 3 (1) : 71-85. doi: 10.3934/jimo.2007.3.71

[15]

Giuseppe Bianchi, Lorenzo Bracciale, Keren Censor-Hillel, Andrea Lincoln, Muriel Médard. The one-out-of-k retrieval problem and linear network coding. Advances in Mathematics of Communications, 2016, 10 (1) : 95-112. doi: 10.3934/amc.2016.10.95

[16]

Zheng Chen, Liu Liu, Lin Mu. Solving the linear transport equation by a deep neural network approach. Discrete and Continuous Dynamical Systems - S, 2022, 15 (4) : 669-686. doi: 10.3934/dcdss.2021070

[17]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[18]

Gheorghe Craciun, Baltazar Aguda, Avner Friedman. Mathematical Analysis Of A Modular Network Coordinating The Cell Cycle And Apoptosis. Mathematical Biosciences & Engineering, 2005, 2 (3) : 473-485. doi: 10.3934/mbe.2005.2.473

[19]

Bailey Kacsmar, Douglas R. Stinson. A network reliability approach to the analysis of combinatorial repairable threshold schemes. Advances in Mathematics of Communications, 2019, 13 (4) : 601-612. doi: 10.3934/amc.2019037

[20]

Rumi Ghosh, Kristina Lerman. Rethinking centrality: The role of dynamical processes in social network analysis. Discrete and Continuous Dynamical Systems - B, 2014, 19 (5) : 1355-1372. doi: 10.3934/dcdsb.2014.19.1355

2021 Impact Factor: 1.411

Metrics

  • PDF downloads (72)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]