July  2008, 4(3): 511-533. doi: 10.3934/jimo.2008.4.511

Multiple criteria intelligence tracking for detecting extremes from sequences of risk incidents

1. 

112 Olsson Hall, University of Virginia, Charlottesville, VA 22904, United States, United States, United States

Received  May 2007 Revised  March 2008 Published  July 2008

A number of quantitative methods have emerged to identify and track precursors to risk for engineering systems. While data mining and statistical inference identify patterns from information of historical events, they may not address features of extreme events that have never occurred. While, event and fault-tree analyses synthesize important information on basic and initiating risk events, they fall short of addressing incident data in real time. Accident precursor analyses refine event and fault tree analyses by considering near-misses or precursors from system operational data. Complementing precursor analysis is an existing method of detecting anomalies in a sequence of risk incident reports to (a) identify and count patterns in the reports, (b) measure and track the complexity of the reports with univariate statistical process control, and (c) identify specific periods of instability. This paper extends the existing method to (d) introduce two additional measurements of patterns, (e) apply multiple criteria statistical process control to track the multiple measurements of the reports, and (f) use optimal search parameters to generate a watch list of system components for input to accident precursor analyses. The extension is demonstrated for a sequence of four observation periods of incident reports in a power distribution system.
Citation: James H. Lambert, Benjamin L. Schulte, Nilesh N. Joshi. Multiple criteria intelligence tracking for detecting extremes from sequences of risk incidents. Journal of Industrial & Management Optimization, 2008, 4 (3) : 511-533. doi: 10.3934/jimo.2008.4.511
[1]

Nina Yan, Tingting Tong, Hongyan Dai. Capital-constrained supply chain with multiple decision attributes: Decision optimization and coordination analysis. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1831-1856. doi: 10.3934/jimo.2018125

[2]

Sangkyu Baek, Bong Dae Choi. Performance analysis of power save mode in IEEE 802.11 infrastructure wireless local area network. Journal of Industrial & Management Optimization, 2009, 5 (3) : 481-492. doi: 10.3934/jimo.2009.5.481

[3]

K. F. C. Yiu, L. L. Xie, K. L. Mak. Analysis of bullwhip effect in supply chains with heterogeneous decision models. Journal of Industrial & Management Optimization, 2009, 5 (1) : 81-94. doi: 10.3934/jimo.2009.5.81

[4]

Fabio Ancona, Laura Caravenna, Annalisa Cesaroni, Giuseppe M. Coclite, Claudio Marchi, Andrea Marson. Analysis and control on networks: Trends and perspectives. Networks & Heterogeneous Media, 2017, 12 (3) : i-ii. doi: 10.3934/nhm.201703i

[5]

Fabio Ancona, Laura Caravenna, Annalisa Cesaroni, Giuseppe M. Coclite, Claudio Marchi, Andrea Marson. Analysis and control on networks: Trends and perspectives. Networks & Heterogeneous Media, 2017, 12 (2) : i-ii. doi: 10.3934/nhm.201702i

[6]

Joost R. Santos. Interdependency analysis with multiple probabilistic sector inputs. Journal of Industrial & Management Optimization, 2008, 4 (3) : 489-510. doi: 10.3934/jimo.2008.4.489

[7]

Kolade M. Owolabi. Numerical analysis and pattern formation process for space-fractional superdiffusive systems. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 543-566. doi: 10.3934/dcdss.2019036

[8]

Amina Eladdadi, Noura Yousfi, Abdessamad Tridane. Preface: Special issue on cancer modeling, analysis and control. Discrete & Continuous Dynamical Systems - B, 2013, 18 (4) : i-iii. doi: 10.3934/dcdsb.2013.18.4i

[9]

Yanming Ge. Analysis of airline seat control with region factor. Journal of Industrial & Management Optimization, 2012, 8 (2) : 363-378. doi: 10.3934/jimo.2012.8.363

[10]

M. Predescu, R. Levins, T. Awerbuch-Friedlander. Analysis of a nonlinear system for community intervention in mosquito control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 605-622. doi: 10.3934/dcdsb.2006.6.605

[11]

Roberto C. Cabrales, Gema Camacho, Enrique Fernández-Cara. Analysis and optimal control of some solidification processes. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 3985-4017. doi: 10.3934/dcds.2014.34.3985

[12]

Hongshan Ren. Stability analysis of a simplified model for the control of testosterone secretion. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 729-738. doi: 10.3934/dcdsb.2004.4.729

[13]

Kazimierz Malanowski, Helmut Maurer. Sensitivity analysis for state constrained optimal control problems. Discrete & Continuous Dynamical Systems - A, 1998, 4 (2) : 241-272. doi: 10.3934/dcds.1998.4.241

[14]

Mikhail Gusev. On reachability analysis for nonlinear control systems with state constraints. Conference Publications, 2015, 2015 (special) : 579-587. doi: 10.3934/proc.2015.0579

[15]

Eduardo Casas, Konstantinos Chrysafinos. Analysis and optimal control of some quasilinear parabolic equations. Mathematical Control & Related Fields, 2018, 8 (3&4) : 607-623. doi: 10.3934/mcrf.2018025

[16]

Saber Saati, Adel Hatami-Marbini, Per J. Agrell, Madjid Tavana. A common set of weight approach using an ideal decision making unit in data envelopment analysis. Journal of Industrial & Management Optimization, 2012, 8 (3) : 623-637. doi: 10.3934/jimo.2012.8.623

[17]

Evelyn K. Thomas, Katharine F. Gurski, Kathleen A. Hoffman. Analysis of SI models with multiple interacting populations using subpopulations. Mathematical Biosciences & Engineering, 2015, 12 (1) : 135-161. doi: 10.3934/mbe.2015.12.135

[18]

Shouyu Ma, Zied Jemai, Evren Sahin, Yves Dallery. Analysis of the Newsboy Problem subject to price dependent demand and multiple discounts. Journal of Industrial & Management Optimization, 2018, 14 (3) : 931-951. doi: 10.3934/jimo.2017083

[19]

Cheng-Dar Liou. Optimization analysis of the machine repair problem with multiple vacations and working breakdowns. Journal of Industrial & Management Optimization, 2015, 11 (1) : 83-104. doi: 10.3934/jimo.2015.11.83

[20]

Fumio Ishizaki. Analysis of the statistical time-access fairness index of one-bit feedback fair scheduler. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 675-689. doi: 10.3934/naco.2011.1.675

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (3)

[Back to Top]