• Previous Article
    Comments on ''Generalized support set invariancy sensitivity analysis in linear optimization''
  • JIMO Home
  • This Issue
  • Next Article
    Global convergence of modified Polak-Ribière-Polyak conjugate gradient methods with sufficient descent property
July  2008, 4(3): 581-609. doi: 10.3934/jimo.2008.4.581

The framework of axiomatics fuzzy sets based fuzzy classifiers

1. 

Research Center of Information and Control, Dalian University of Technology, Dalian, 116024, China

2. 

Dept. of Computing, Curtin University of Technology, Bentley, WA, 6102, Australia

Received  November 2006 Revised  March 2008 Published  July 2008

In this paper we will propose a new classifier design based on the AFS fuzzy theory. First, we will briefly review the current researches in data classification based on fuzzy and rough set theories and then present the AFS framework. Second, we will present new membership functions for fuzzy sets with their logic operations in the AFS framework and then tackle some theoretical and computational problems related to classifier design. Third, we will develop a new approach for fuzzy classifier design based on the proposed membership functions and their logic operations. Finally, a well-known example is used to illustrate its effectiveness. The advantage of this classifier is in two-folds. One is that it can mimic the human reasoning comprehensively and offers a far more flexible and effective way for the study of large-scale intelligent systems. The other is its simplicity in methodology and mathematical beauty in fuzzy theory.
Citation: Xiaodong Liu, Wanquan Liu. The framework of axiomatics fuzzy sets based fuzzy classifiers. Journal of Industrial & Management Optimization, 2008, 4 (3) : 581-609. doi: 10.3934/jimo.2008.4.581
[1]

Wenjuan Jia, Yingjie Deng, Chenyang Xin, Xiaodong Liu, Witold Pedrycz. A classification algorithm with Linear Discriminant Analysis and Axiomatic Fuzzy Sets. Mathematical Foundations of Computing, 2019, 2 (1) : 73-81. doi: 10.3934/mfc.2019006

[2]

Jun Xie, Jinlong Yuan, Dongxia Wang, Weili Liu, Chongyang Liu. Uniqueness of solutions to fuzzy relational equations regarding Max-av composition and strong regularity of the matrices in Max-av algebra. Journal of Industrial & Management Optimization, 2018, 14 (3) : 1007-1022. doi: 10.3934/jimo.2017087

[3]

Abdel-Rahman Hedar, Ahmed Fouad Ali, Taysir Hassan Abdel-Hamid. Genetic algorithm and Tabu search based methods for molecular 3D-structure prediction. Numerical Algebra, Control & Optimization, 2011, 1 (1) : 191-209. doi: 10.3934/naco.2011.1.191

[4]

Guangmei Shao, Wei Xue, Gaohang Yu, Xiao Zheng. Improved SVRG for finite sum structure optimization with application to binary classification. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-14. doi: 10.3934/jimo.2019052

[5]

Cui-Ping Cheng, Wan-Tong Li, Zhi-Cheng Wang. Asymptotic stability of traveling wavefronts in a delayed population model with stage structure on a two-dimensional spatial lattice. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 559-575. doi: 10.3934/dcdsb.2010.13.559

[6]

D. Warren, K Najarian. Learning theory applied to Sigmoid network classification of protein biological function using primary protein structure. Conference Publications, 2003, 2003 (Special) : 898-904. doi: 10.3934/proc.2003.2003.898

[7]

Richard H. Cushman, Jędrzej Śniatycki. On Lie algebra actions. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-15. doi: 10.3934/dcdss.2020066

[8]

Robert I. McLachlan, Ander Murua. The Lie algebra of classical mechanics. Journal of Computational Dynamics, 2019, 6 (2) : 345-360. doi: 10.3934/jcd.2019017

[9]

Uta Renata Freiberg. Einstein relation on fractal objects. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 509-525. doi: 10.3934/dcdsb.2012.17.509

[10]

Chun-Xiang Guo, Guo Qiang, Jin Mao-Zhu, Zhihan Lv. Dynamic systems based on preference graph and distance. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1139-1154. doi: 10.3934/dcdss.2015.8.1139

[11]

Zhuchun Li. Effectual leadership in flocks with hierarchy and individual preference. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3683-3702. doi: 10.3934/dcds.2014.34.3683

[12]

Hari Bercovici, Viorel Niţică. A Banach algebra version of the Livsic theorem. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 523-534. doi: 10.3934/dcds.1998.4.523

[13]

Julien Arino, Fred Brauer, P. van den Driessche, James Watmough, Jianhong Wu. A final size relation for epidemic models. Mathematical Biosciences & Engineering, 2007, 4 (2) : 159-175. doi: 10.3934/mbe.2007.4.159

[14]

Jiaquan Zhan, Fanyong Meng. Cores and optimal fuzzy communication structures of fuzzy games. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1187-1198. doi: 10.3934/dcdss.2019082

[15]

Juan J. Nieto, M. Victoria Otero-Espinar, Rosana Rodríguez-López. Dynamics of the fuzzy logistic family. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 699-717. doi: 10.3934/dcdsb.2010.14.699

[16]

Natalia Skripnik. Averaging of fuzzy integral equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1999-2010. doi: 10.3934/dcdsb.2017118

[17]

Purnima Pandit. Fuzzy system of linear equations. Conference Publications, 2013, 2013 (special) : 619-627. doi: 10.3934/proc.2013.2013.619

[18]

Heinz-Jürgen Flad, Gohar Harutyunyan. Ellipticity of quantum mechanical Hamiltonians in the edge algebra. Conference Publications, 2011, 2011 (Special) : 420-429. doi: 10.3934/proc.2011.2011.420

[19]

Franz W. Kamber and Peter W. Michor. Completing Lie algebra actions to Lie group actions. Electronic Research Announcements, 2004, 10: 1-10.

[20]

Viktor Levandovskyy, Gerhard Pfister, Valery G. Romanovski. Evaluating cyclicity of cubic systems with algorithms of computational algebra. Communications on Pure & Applied Analysis, 2012, 11 (5) : 2023-2035. doi: 10.3934/cpaa.2012.11.2023

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]