- Previous Article
- JIMO Home
- This Issue
-
Next Article
$H_\infty$ optimal stabilization of a class of uncertain impulsive systems: An LMI approach
Simultaneous system of vector equilibrium problems
1. | Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan 80424 |
2. | Department of Information Management, Cheng Shiu University, No.840, Chengcing Rd., Niaosong Township, Kaohsiung County 833, Taiwan, R.O.C. |
3. | Department of Finance, National Sun Yat-sen University, Kaohsiung, Taiwan 80424, Taiwan |
4. | Department of Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan 80424 |
[1] |
Annibale Magni, Matteo Novaga. A note on non lower semicontinuous perimeter functionals on partitions. Networks and Heterogeneous Media, 2016, 11 (3) : 501-508. doi: 10.3934/nhm.2016006 |
[2] |
Cristian Bereanu, Petru Jebelean. Multiple critical points for a class of periodic lower semicontinuous functionals. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 47-66. doi: 10.3934/dcds.2013.33.47 |
[3] |
Qilin Wang, Shengji Li. Lower semicontinuity of the solution mapping to a parametric generalized vector equilibrium problem. Journal of Industrial and Management Optimization, 2014, 10 (4) : 1225-1234. doi: 10.3934/jimo.2014.10.1225 |
[4] |
Tamara Fastovska. Upper semicontinuous attractor for 2D Mindlin-Timoshenko thermoelastic model with memory. Communications on Pure and Applied Analysis, 2007, 6 (1) : 83-101. doi: 10.3934/cpaa.2007.6.83 |
[5] |
Federica Dragoni. Metric Hopf-Lax formula with semicontinuous data. Discrete and Continuous Dynamical Systems, 2007, 17 (4) : 713-729. doi: 10.3934/dcds.2007.17.713 |
[6] |
Antonio Siconolfi, Gabriele Terrone. A metric proof of the converse Lyapunov theorem for semicontinuous multivalued dynamics. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4409-4427. doi: 10.3934/dcds.2012.32.4409 |
[7] |
Martino Bardi, Yoshikazu Giga. Right accessibility of semicontinuous initial data for Hamilton-Jacobi equations. Communications on Pure and Applied Analysis, 2003, 2 (4) : 447-459. doi: 10.3934/cpaa.2003.2.447 |
[8] |
Yunan Wu, Guangya Chen, T. C. Edwin Cheng. A vector network equilibrium problem with a unilateral constraint. Journal of Industrial and Management Optimization, 2010, 6 (3) : 453-464. doi: 10.3934/jimo.2010.6.453 |
[9] |
Sandro Zagatti. Existence of minimizers for one-dimensional vectorial non-semicontinuous functionals with second order lagrangian. Discrete and Continuous Dynamical Systems, 2022, 42 (4) : 2005-2025. doi: 10.3934/dcds.2021181 |
[10] |
Christoph Kawan. Upper and lower estimates for invariance entropy. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 169-186. doi: 10.3934/dcds.2011.30.169 |
[11] |
Robert Elliott, Dilip B. Madan, Tak Kuen Siu. Lower and upper pricing of financial assets. Probability, Uncertainty and Quantitative Risk, 2022, 7 (1) : 45-66. doi: 10.3934/puqr.2022004 |
[12] |
Qilong Zhai, Ran Zhang. Lower and upper bounds of Laplacian eigenvalue problem by weak Galerkin method on triangular meshes. Discrete and Continuous Dynamical Systems - B, 2019, 24 (1) : 403-413. doi: 10.3934/dcdsb.2018091 |
[13] |
João Fialho, Feliz Minhós. The role of lower and upper solutions in the generalization of Lidstone problems. Conference Publications, 2013, 2013 (special) : 217-226. doi: 10.3934/proc.2013.2013.217 |
[14] |
Luisa Malaguti, Cristina Marcelli. Existence of bounded trajectories via upper and lower solutions. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 575-590. doi: 10.3934/dcds.2000.6.575 |
[15] |
Massimo Tarallo, Zhe Zhou. Limit periodic upper and lower solutions in a generic sense. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 293-309. doi: 10.3934/dcds.2018014 |
[16] |
Chunyan Ji, Yang Xue, Yong Li. Periodic solutions for SDEs through upper and lower solutions. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4737-4754. doi: 10.3934/dcdsb.2020122 |
[17] |
Alberto Boscaggin, Fabio Zanolin. Subharmonic solutions for nonlinear second order equations in presence of lower and upper solutions. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 89-110. doi: 10.3934/dcds.2013.33.89 |
[18] |
Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180 |
[19] |
Soña Pavlíková, Daniel Ševčovič. On construction of upper and lower bounds for the HOMO-LUMO spectral gap. Numerical Algebra, Control and Optimization, 2019, 9 (1) : 53-69. doi: 10.3934/naco.2019005 |
[20] |
Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete and Continuous Dynamical Systems, 2021, 41 (8) : 3683-3708. doi: 10.3934/dcds.2021012 |
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]