April  2009, 5(2): 239-252. doi: 10.3934/jimo.2009.5.239

Estimation in polytomous logistic model: Comparison of methods

1. 

Departamento Acadêmico de Matemática, UTFPR - Universidade Tecnológica Federal do Paraná, Rua Sete de Setembro, 3165, 80230-901 Curitiba Paraná, Brazil

2. 

Departamento de Estatística, UFPR - Universidade Federal do Paraná, Centro Politécnico Jardim das Américas Caixa Postal 19081, 81531-980 Curitiba Paraná, Brazil

Received  April 2007 Revised  February 2009 Published  April 2009

The logistic regression model is a powerful method for modeling the relationship between a categorical variable and a set of explanatory variables. In practice, however, the existence of maximum likelihood estimates is known to be dependent on the data configuration. In fact, the Maximum Likelihood Estimators (MLE) of unknown parameters exists if, and only if, there is data overlapping. The Hidden Logistic Regression (HLR) is an alternative model under which the observed response is related to the unobservable response. The Maximum Estimated Likelihood (MEL) method is also proposed, once it is immune to the complete or quasi-complete separation of data. The Principal Component Logistic Regression (PCLR) model is useful to reduce the number of dimensions of a logistic regression model with continuous covariates avoiding multicollinearity. In this paper we present an extension of the HLR and PCLR models as means for the solution of problems with polytomous responses. The main purpose is to compare the classificatory performance obtained by the models mentioned above with those of the Classical Logistic Regression (CLR) and Individualized Logistic regression (ILR) models, in the case of polytomous responses. The purpose is to propose an alternative approach for the parameter estimation problem in polytomous logistic models when the data groups are completely separated. Simulations results resulting from databases taken from the literature show that the proposed approach is feasible.
Citation: Inácio Andruski-Guimarães, Anselmo Chaves-Neto. Estimation in polytomous logistic model: Comparison of methods. Journal of Industrial & Management Optimization, 2009, 5 (2) : 239-252. doi: 10.3934/jimo.2009.5.239
[1]

Hui Zhang, Jian-Feng Cai, Lizhi Cheng, Jubo Zhu. Strongly convex programming for exact matrix completion and robust principal component analysis. Inverse Problems & Imaging, 2012, 6 (2) : 357-372. doi: 10.3934/ipi.2012.6.357

[2]

Qingshan You, Qun Wan, Yipeng Liu. A short note on strongly convex programming for exact matrix completion and robust principal component analysis. Inverse Problems & Imaging, 2013, 7 (1) : 305-306. doi: 10.3934/ipi.2013.7.305

[3]

Azam Moradi, Jafar Razmi, Reza Babazadeh, Ali Sabbaghnia. An integrated Principal Component Analysis and multi-objective mathematical programming approach to agile supply chain network design under uncertainty. Journal of Industrial & Management Optimization, 2019, 15 (2) : 855-879. doi: 10.3934/jimo.2018074

[4]

Sebastian Springer, Heikki Haario, Vladimir Shemyakin, Leonid Kalachev, Denis Shchepakin. Robust parameter estimation of chaotic systems. Inverse Problems & Imaging, 2019, 13 (6) : 1189-1212. doi: 10.3934/ipi.2019053

[5]

Wei Li, Yun Teng. Enterprise inefficient investment behavior analysis based on regression analysis. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1015-1025. doi: 10.3934/dcdss.2019069

[6]

Dominique Chapelle, Philippe Moireau, Patrick Le Tallec. Robust filtering for joint state-parameter estimation in distributed mechanical systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 65-84. doi: 10.3934/dcds.2009.23.65

[7]

Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2017, 13 (5) : 0-0. doi: 10.3934/jimo.2019113

[8]

Jiang Xie, Junfu Xu, Celine Nie, Qing Nie. Machine learning of swimming data via wisdom of crowd and regression analysis. Mathematical Biosciences & Engineering, 2017, 14 (2) : 511-527. doi: 10.3934/mbe.2017031

[9]

Ruotian Gao, Wenxun Xing. Robust sensitivity analysis for linear programming with ellipsoidal perturbation. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-16. doi: 10.3934/jimo.2019041

[10]

Gregory Zitelli, Seddik M. Djouadi, Judy D. Day. Combining robust state estimation with nonlinear model predictive control to regulate the acute inflammatory response to pathogen. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1127-1139. doi: 10.3934/mbe.2015.12.1127

[11]

Dominique Duncan, Thomas Strohmer. Classification of Alzheimer's disease using unsupervised diffusion component analysis. Mathematical Biosciences & Engineering, 2016, 13 (6) : 1119-1130. doi: 10.3934/mbe.2016033

[12]

Krzysztof Fujarewicz, Krzysztof Łakomiec. Parameter estimation of systems with delays via structural sensitivity analysis. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2521-2533. doi: 10.3934/dcdsb.2014.19.2521

[13]

Xinyue Fan, Claude-Michel Brauner, Linda Wittkop. Mathematical analysis of a HIV model with quadratic logistic growth term. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2359-2385. doi: 10.3934/dcdsb.2012.17.2359

[14]

Bilal Saad, Mazen Saad. Numerical analysis of a non equilibrium two-component two-compressible flow in porous media. Discrete & Continuous Dynamical Systems - S, 2014, 7 (2) : 317-346. doi: 10.3934/dcdss.2014.7.317

[15]

Marko Filipović, Ivica Kopriva. A comparison of dictionary based approaches to inpainting and denoising with an emphasis to independent component analysis learned dictionaries. Inverse Problems & Imaging, 2011, 5 (4) : 815-841. doi: 10.3934/ipi.2011.5.815

[16]

Dominique Duncan, Paul Vespa, Arthur W. Toga. Detecting features of epileptogenesis in EEG after TBI using unsupervised diffusion component analysis. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 161-172. doi: 10.3934/dcdsb.2018010

[17]

Claude-Michel Brauner, Xinyue Fan, Luca Lorenzi. Two-dimensional stability analysis in a HIV model with quadratic logistic growth term. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1813-1844. doi: 10.3934/cpaa.2013.12.1813

[18]

Alan E. Lindsay, Michael J. Ward. An asymptotic analysis of the persistence threshold for the diffusive logistic model in spatial environments with localized patches. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1139-1179. doi: 10.3934/dcdsb.2010.14.1139

[19]

Bas Janssens. Infinitesimally natural principal bundles. Journal of Geometric Mechanics, 2016, 8 (2) : 199-220. doi: 10.3934/jgm.2016004

[20]

V. Balaji, I. Biswas and D. S. Nagaraj. Principal bundles with parabolic structure. Electronic Research Announcements, 2001, 7: 37-44.

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

[Back to Top]