
Previous Article
WellPosedness for vector quasiequilibrium problems with applications
 JIMO Home
 This Issue

Next Article
Sawing planning using a multicriteria approach
On convergence of augmented Lagrangian method for inverse semidefinite quadratic programming problems
1.  Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, LiaoNing, China, China 
2.  BJNUHKBU United International College, Zhuhai, China 
[1] 
Yue Lu, YingEn Ge, LiWei Zhang. An alternating direction method for solving a class of inverse semidefinite quadratic programming problems. Journal of Industrial & Management Optimization, 2016, 12 (1) : 317336. doi: 10.3934/jimo.2016.12.317 
[2] 
Lipu Zhang, Yinghong Xu, Zhengjing Jin. An efficient algorithm for convex quadratic semidefinite optimization. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 129144. doi: 10.3934/naco.2012.2.129 
[3] 
Yi Xu, Jinjie Liu, Liqun Qi. A new class of positive semidefinite tensors. Journal of Industrial & Management Optimization, 2017, 13 (5) : 111. doi: 10.3934/jimo.2018186 
[4] 
Li Jin, Hongying Huang. Differential equation method based on approximate augmented Lagrangian for nonlinear programming. Journal of Industrial & Management Optimization, 2017, 13 (5) : 115. doi: 10.3934/jimo.2019053 
[5] 
Chunlin Wu, Juyong Zhang, XueCheng Tai. Augmented Lagrangian method for total variation restoration with nonquadratic fidelity. Inverse Problems & Imaging, 2011, 5 (1) : 237261. doi: 10.3934/ipi.2011.5.237 
[6] 
Xueyong Wang, Yiju Wang, Gang Wang. An accelerated augmented Lagrangian method for multicriteria optimization problem. Journal of Industrial & Management Optimization, 2020, 16 (1) : 19. doi: 10.3934/jimo.2018136 
[7] 
Wei Huang, KaFai Cedric Yiu, Henry Y. K. Lau. Semidefinite programming based approaches for realtime tractor localization in port container terminals. Numerical Algebra, Control & Optimization, 2013, 3 (4) : 665680. doi: 10.3934/naco.2013.3.665 
[8] 
XiHong Yan. A new convergence proof of augmented Lagrangianbased method with full Jacobian decomposition for structured variational inequalities. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 4554. doi: 10.3934/naco.2016.6.45 
[9] 
Monika Eisenmann, Etienne Emmrich, Volker Mehrmann. Convergence of the backward Euler scheme for the operatorvalued Riccati differential equation with semidefinite data. Evolution Equations & Control Theory, 2019, 8 (2) : 315342. doi: 10.3934/eect.2019017 
[10] 
Songqiang Qiu, Zhongwen Chen. An adaptively regularized sequential quadratic programming method for equality constrained optimization. Journal of Industrial & Management Optimization, 2017, 13 (5) : 114. doi: 10.3934/jimo.2019075 
[11] 
Hongxiu Zhong, Guoliang Chen, Xueping Guo. Semilocal convergence of the NewtonHSS method under the center Lipschitz condition. Numerical Algebra, Control & Optimization, 2019, 9 (1) : 8599. doi: 10.3934/naco.2019007 
[12] 
Yang Li, Yonghong Ren, Yun Wang, Jian Gu. Convergence analysis of a nonlinear Lagrangian method for nonconvex semidefinite programming with subproblem inexactly solved. Journal of Industrial & Management Optimization, 2015, 11 (1) : 6581. doi: 10.3934/jimo.2015.11.65 
[13] 
Wei Zhu, XueCheng Tai, Tony Chan. Augmented Lagrangian method for a mean curvature based image denoising model. Inverse Problems & Imaging, 2013, 7 (4) : 14091432. doi: 10.3934/ipi.2013.7.1409 
[14] 
Shuang Chen, LiPing Pang, Dan Li. An inexact semismooth Newton method for variational inequality with symmetric cone constraints. Journal of Industrial & Management Optimization, 2015, 11 (3) : 733746. doi: 10.3934/jimo.2015.11.733 
[15] 
Yuhong Dai, Nobuo Yamashita. Convergence analysis of sparse quasiNewton updates with positive definite matrix completion for twodimensional functions. Numerical Algebra, Control & Optimization, 2011, 1 (1) : 6169. doi: 10.3934/naco.2011.1.61 
[16] 
Yanqun Liu, MingFang Ding. A ladder method for linear semiinfinite programming. Journal of Industrial & Management Optimization, 2014, 10 (2) : 397412. doi: 10.3934/jimo.2014.10.397 
[17] 
Yanqin Bai, Lipu Zhang. A fullNewton step interiorpoint algorithm for symmetric cone convex quadratic optimization. Journal of Industrial & Management Optimization, 2011, 7 (4) : 891906. doi: 10.3934/jimo.2011.7.891 
[18] 
Jinyan Fan, Jianyu Pan. On the convergence rate of the inexact LevenbergMarquardt method. Journal of Industrial & Management Optimization, 2011, 7 (1) : 199210. doi: 10.3934/jimo.2011.7.199 
[19] 
Yves Bourgault, Damien Broizat, PierreEmmanuel Jabin. Convergence rate for the method of moments with linear closure relations. Kinetic & Related Models, 2015, 8 (1) : 127. doi: 10.3934/krm.2015.8.1 
[20] 
Ye Tian, ShuCherng Fang, Zhibin Deng, Wenxun Xing. Computable representation of the cone of nonnegative quadratic forms over a general secondorder cone and its application to completely positive programming. Journal of Industrial & Management Optimization, 2013, 9 (3) : 703721. doi: 10.3934/jimo.2013.9.703 
2018 Impact Factor: 1.025
Tools
Metrics
Other articles
by authors
[Back to Top]