-
Previous Article
Deterministic modeling of whole-body sheep metabolism
- JIMO Home
- This Issue
-
Next Article
An empirical study on discrete optimization models for portfolio selection
A Lagrangian dual and surrogate method for multi-dimensional quadratic knapsack problems
1. | School of Management, Fudan University, Shanghai 200433 |
2. | Department of Mathematics, Shanghai University, Shanghai 200444, China, China |
[1] |
Jing Zhou, Dejun Chen, Zhenbo Wang, Wenxun Xing. A conic approximation method for the 0-1 quadratic knapsack problem. Journal of Industrial & Management Optimization, 2013, 9 (3) : 531-547. doi: 10.3934/jimo.2013.9.531 |
[2] |
Jing Zhou, Cheng Lu, Ye Tian, Xiaoying Tang. A socp relaxation based branch-and-bound method for generalized trust-region subproblem. Journal of Industrial & Management Optimization, 2017, 13 (5) : 0-0. doi: 10.3934/jimo.2019104 |
[3] |
Jing Zhou, Zhibin Deng. A low-dimensional SDP relaxation based spatial branch and bound method for nonconvex quadratic programs. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-16. doi: 10.3934/jimo.2019044 |
[4] |
Xiaoling Sun, Hongbo Sheng, Duan Li. An exact algorithm for 0-1 polynomial knapsack problems. Journal of Industrial & Management Optimization, 2007, 3 (2) : 223-232. doi: 10.3934/jimo.2007.3.223 |
[5] |
Z.G. Feng, K.L. Teo, Y. Zhao. Branch and bound method for sensor scheduling in discrete time. Journal of Industrial & Management Optimization, 2005, 1 (4) : 499-512. doi: 10.3934/jimo.2005.1.499 |
[6] |
Shu-Cherng Fang, David Y. Gao, Ruey-Lin Sheu, Soon-Yi Wu. Canonical dual approach to solving 0-1 quadratic programming problems. Journal of Industrial & Management Optimization, 2008, 4 (1) : 125-142. doi: 10.3934/jimo.2008.4.125 |
[7] |
Cheng Lu, Zhenbo Wang, Wenxun Xing, Shu-Cherng Fang. Extended canonical duality and conic programming for solving 0-1 quadratic programming problems. Journal of Industrial & Management Optimization, 2010, 6 (4) : 779-793. doi: 10.3934/jimo.2010.6.779 |
[8] |
Yuhua Zhu. A local sensitivity and regularity analysis for the Vlasov-Poisson-Fokker-Planck system with multi-dimensional uncertainty and the spectral convergence of the stochastic Galerkin method. Networks & Heterogeneous Media, 2019, 14 (4) : 677-707. doi: 10.3934/nhm.2019027 |
[9] |
S. Kanagawa, K. Inoue, A. Arimoto, Y. Saisho. Mean square approximation of multi dimensional reflecting fractional Brownian motion via penalty method. Conference Publications, 2005, 2005 (Special) : 463-475. doi: 10.3934/proc.2005.2005.463 |
[10] |
Hui Gao, Jian Lv, Xiaoliang Wang, Liping Pang. An alternating linearization bundle method for a class of nonconvex optimization problem with inexact information. Journal of Industrial & Management Optimization, 2017, 13 (5) : 0-0. doi: 10.3934/jimo.2019135 |
[11] |
Weipeng Hu, Zichen Deng, Yuyue Qin. Multi-symplectic method to simulate Soliton resonance of (2+1)-dimensional Boussinesq equation. Journal of Geometric Mechanics, 2013, 5 (3) : 295-318. doi: 10.3934/jgm.2013.5.295 |
[12] |
Wen-ling Zhao, Dao-jin Song. A global error bound via the SQP method for constrained optimization problem. Journal of Industrial & Management Optimization, 2007, 3 (4) : 775-781. doi: 10.3934/jimo.2007.3.775 |
[13] |
Yunhai Xiao, Soon-Yi Wu, Bing-Sheng He. A proximal alternating direction method for $\ell_{2,1}$-norm least squares problem in multi-task feature learning. Journal of Industrial & Management Optimization, 2012, 8 (4) : 1057-1069. doi: 10.3934/jimo.2012.8.1057 |
[14] |
Tatsien Li, Wancheng Sheng. The general multi-dimensional Riemann problem for hyperbolic systems with real constant coefficients. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 737-744. doi: 10.3934/dcds.2002.8.737 |
[15] |
Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228 |
[16] |
Franz Achleitner, Anton Arnold, Eric A. Carlen. On multi-dimensional hypocoercive BGK models. Kinetic & Related Models, 2018, 11 (4) : 953-1009. doi: 10.3934/krm.2018038 |
[17] |
Anatoli F. Ivanov. On global dynamics in a multi-dimensional discrete map. Conference Publications, 2015, 2015 (special) : 652-659. doi: 10.3934/proc.2015.0652 |
[18] |
Gerald Sommer, Di Zang. Parity symmetry in multi-dimensional signals. Communications on Pure & Applied Analysis, 2007, 6 (3) : 829-852. doi: 10.3934/cpaa.2007.6.829 |
[19] |
Kang-Ling Liao, Chih-Wen Shih, Chi-Jer Yu. The snapback repellers for chaos in multi-dimensional maps. Journal of Computational Dynamics, 2018, 5 (1&2) : 81-92. doi: 10.3934/jcd.2018004 |
[20] |
Yuzhong Zhang, Fan Zhang, Maocheng Cai. Some new results on multi-dimension Knapsack problem. Journal of Industrial & Management Optimization, 2005, 1 (3) : 315-321. doi: 10.3934/jimo.2005.1.315 |
2018 Impact Factor: 1.025
Tools
Metrics
Other articles
by authors
[Back to Top]