• Previous Article
    A penalty function algorithm with objective parameters for nonlinear mathematical programming
  • JIMO Home
  • This Issue
  • Next Article
    Feedback limited opportunistic scheduling and admission control for ergodic rate guarantees over Nakagami-$m$ fading channels
July  2009, 5(3): 569-584. doi: 10.3934/jimo.2009.5.569

Human resource management using working time accounts with expiry of hours

1. 

IOC Research Institute - Technical University of Catalonia, Av. Diagonal 647, 11th floor, 08028, Barcelona, Spain, Spain, Spain

Received  January 2008 Revised  October 2008 Published  June 2009

Herein is presented a human resource management system based on a working time account (WTA) in which accumulated hours expire after a certain date, whether those owed by the employee to the company, or vice versa. The condition of hours-expiry limits flexibility but protects workers. The consideration of this feature enables modelling of many current industrial scenarios, at the expense of complicating the use of WTAs and hugely increasing the size of the models. A staff planning problem from the services industry is modelled and solved through mathematical programming, and the approach is shown to be efficient for realistic staff sizes. Lastly, a variety of scenarios are presented, for which the financial benefit generated by WTAs is calculated and possible compensations for workers are explored.
Citation: Albert Corominas, Amaia Lusa, Rafael Pastor. Human resource management using working time accounts with expiry of hours. Journal of Industrial & Management Optimization, 2009, 5 (3) : 569-584. doi: 10.3934/jimo.2009.5.569
[1]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[2]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[3]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[4]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[5]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[6]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[7]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[8]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[9]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[10]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (42)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]