July  2009, 5(3): 671-682. doi: 10.3934/jimo.2009.5.671

A multi-filter system for speech enhancement under low signal-to-noise ratios

1. 

Department of Applied Mathematics, The Hong Kong Polytechnic University, Hunghom, Hong Kong, China

2. 

Department of Applied Mathematics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China

3. 

Western Australian Telecommunications Research Institute, A joint venture between The University of Western Australia, and Curtin University of Technology, Perth, Australia, Australia

Received  March 2008 Revised  March 2009 Published  June 2009

In this paper, the problem of deteriorating performance of speech recognition under very low signal-to-noise ratios (SNR) is considered. In particular, for a given pre-trained speech recognizer and for a finite set of speech commands, we show that popular noise reduction methods have a mixed performance in speech recognition accuracy under very low SNR. Although most noise reduction methods are attempting to reduce speech distortion or to increase noise suppression, it does not necessarily improve speech recognition accuracy very much due to the complexity of the recognizer. We propose a new hybrid algorithm to optimize on the speech recognition accuracy directly by mixing different noise reduction methods together. We show that this method can indeed improve the accuracy significantly.
Citation: K. F. C. Yiu, K. Y. Chan, S. Y. Low, S. Nordholm. A multi-filter system for speech enhancement under low signal-to-noise ratios. Journal of Industrial & Management Optimization, 2009, 5 (3) : 671-682. doi: 10.3934/jimo.2009.5.671
[1]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[2]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[3]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[4]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[5]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[6]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[7]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[8]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[9]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[10]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[11]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[12]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (26)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]