\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Levitin-Polyak well-posedness of generalized vector quasi-equilibrium problems

Abstract Related Papers Cited by
  • In this paper, Levitin-Polyak well-posedness for two classes of generalized vector quasi-equilibrium problems is introduced. Criteria and characterizations of the Levitin-Polyak well-posedness are investigated. By virtue of gap functions for the generalized vector quasi-equilibrium problems, some equivalent relations are obtained between the Levitin-Polyak well-posedness for optimization problems and the Levitin-Polyak well-posedness for generalized vector quasi-equilibrium problems. Finally, a set-valued version of Ekeland's variational principle is derived and applied to establish a sufficient condition for Levitin-Polyak well-posedness of a class of generalized vector quasi-equilibrium problems.
    Mathematics Subject Classification: 90C31, 49J53.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(79) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return