# American Institute of Mathematical Sciences

January  2010, 6(1): 103-121. doi: 10.3934/jimo.2010.6.103

## Congestion control with pricing in the absence of demand and cost functions: An improved trial and error method

 1 School of Computer Sciences, Nanjing Normal University, Nanjing 210097, China 2 School of Mathematical Science, Nanjing Normal University, Nanjing 210046, China, China

Received  October 2008 Revised  September 2009 Published  November 2009

Without the information of the origin-destination demand function and users' valuation for travel time saving, the precise estimation of the road tolls for various pricing schemes must go in a trial-and-error manner, as suggested by [2] and [15], and recently realized by [6, 7, 11, 22, 24]. For a trial of the tolls pattern, the responses of the users can be observed and used to update the toll pattern for the next trial. Since getting the responses of the users is expensive, it is desirable to use the acquired information exhaustively; That is, we need to make the method converge to an approximate solution of the problem within as little number of changes as possible.
In this paper, we propose to update the link tolls pattern in an improved manner, where the profit direction is the combination of two known directions. This combined manner makes the method more efficient than the method using solely one of them. We prove the global convergence of the method under suitable conditions as those in [6, 7, 24]. Some preliminary computational results are also reported.
Citation: Gang Qian, Deren Han, Hongjin He. Congestion control with pricing in the absence of demand and cost functions: An improved trial and error method. Journal of Industrial and Management Optimization, 2010, 6 (1) : 103-121. doi: 10.3934/jimo.2010.6.103
 [1] Deren Han, Hai Yang, Xiaoming Yuan. A practical trial-and-error implementation of marginal-cost pricing on networks. Journal of Industrial and Management Optimization, 2010, 6 (2) : 299-313. doi: 10.3934/jimo.2010.6.299 [2] Jing Zhang, Jianquan Lu, Jinde Cao, Wei Huang, Jianhua Guo, Yun Wei. Traffic congestion pricing via network congestion game approach. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1553-1567. doi: 10.3934/dcdss.2020378 [3] Hui-Qiang Ma, Nan-Jing Huang. Neural network smoothing approximation method for stochastic variational inequality problems. Journal of Industrial and Management Optimization, 2015, 11 (2) : 645-660. doi: 10.3934/jimo.2015.11.645 [4] Abd-semii Oluwatosin-Enitan Owolabi, Timilehin Opeyemi Alakoya, Adeolu Taiwo, Oluwatosin Temitope Mewomo. A new inertial-projection algorithm for approximating common solution of variational inequality and fixed point problems of multivalued mappings. Numerical Algebra, Control and Optimization, 2022, 12 (2) : 255-278. doi: 10.3934/naco.2021004 [5] Shaotao Hu, Yuanheng Wang, Bing Tan, Fenghui Wang. Inertial iterative method for solving variational inequality problems of pseudo-monotone operators and fixed point problems of nonexpansive mappings in Hilbert spaces. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022060 [6] Thanyarat JItpeera, Tamaki Tanaka, Poom Kumam. Triple-hierarchical problems with variational inequality. Numerical Algebra, Control and Optimization, 2021  doi: 10.3934/naco.2021038 [7] Chibueze Christian Okeke, Abdulmalik Usman Bello, Lateef Olakunle Jolaoso, Kingsley Chimuanya Ukandu. Inertial method for split null point problems with pseudomonotone variational inequality problems. Numerical Algebra, Control and Optimization, 2021  doi: 10.3934/naco.2021037 [8] Masao Fukushima. A class of gap functions for quasi-variational inequality problems. Journal of Industrial and Management Optimization, 2007, 3 (2) : 165-171. doi: 10.3934/jimo.2007.3.165 [9] Wenyan Zhang, Shu Xu, Shengji Li, Xuexiang Huang. Generalized weak sharp minima of variational inequality problems with functional constraints. Journal of Industrial and Management Optimization, 2013, 9 (3) : 621-630. doi: 10.3934/jimo.2013.9.621 [10] Li Wang, Yang Li, Liwei Zhang. A differential equation method for solving box constrained variational inequality problems. Journal of Industrial and Management Optimization, 2011, 7 (1) : 183-198. doi: 10.3934/jimo.2011.7.183 [11] Jaimie W. Lien, Vladimir V. Mazalov, Jie Zheng. Pricing equilibrium of transportation systems with behavioral commuters. Journal of Dynamics and Games, 2020, 7 (4) : 335-350. doi: 10.3934/jdg.2020026 [12] Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial and Management Optimization, 2022, 18 (1) : 593-611. doi: 10.3934/jimo.2020170 [13] Rong Hu, Ya-Ping Fang, Nan-Jing Huang. Levitin-Polyak well-posedness for variational inequalities and for optimization problems with variational inequality constraints. Journal of Industrial and Management Optimization, 2010, 6 (3) : 465-481. doi: 10.3934/jimo.2010.6.465 [14] Svetlana Matculevich, Pekka Neittaanmäki, Sergey Repin. A posteriori error estimates for time-dependent reaction-diffusion problems based on the Payne--Weinberger inequality. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2659-2677. doi: 10.3934/dcds.2015.35.2659 [15] Suxiang He, Pan Zhang, Xiao Hu, Rong Hu. A sample average approximation method based on a D-gap function for stochastic variational inequality problems. Journal of Industrial and Management Optimization, 2014, 10 (3) : 977-987. doi: 10.3934/jimo.2014.10.977 [16] Jian-Wen Peng, Xin-Min Yang. Levitin-Polyak well-posedness of a system of generalized vector variational inequality problems. Journal of Industrial and Management Optimization, 2015, 11 (3) : 701-714. doi: 10.3934/jimo.2015.11.701 [17] X. X. Huang, Xiaoqi Yang. Levitin-Polyak well-posedness in generalized variational inequality problems with functional constraints. Journal of Industrial and Management Optimization, 2007, 3 (4) : 671-684. doi: 10.3934/jimo.2007.3.671 [18] Takeshi Fukao, Nobuyuki Kenmochi. Quasi-variational inequality approach to heat convection problems with temperature dependent velocity constraint. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2523-2538. doi: 10.3934/dcds.2015.35.2523 [19] Gang Cai, Yekini Shehu, Olaniyi S. Iyiola. Inertial Tseng's extragradient method for solving variational inequality problems of pseudo-monotone and non-Lipschitz operators. Journal of Industrial and Management Optimization, 2022, 18 (4) : 2873-2902. doi: 10.3934/jimo.2021095 [20] Lorenzo Brasco, Filippo Santambrogio. An equivalent path functional formulation of branched transportation problems. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 845-871. doi: 10.3934/dcds.2011.29.845

2021 Impact Factor: 1.411