January  2010, 6(1): 29-46. doi: 10.3934/jimo.2010.6.29

A recursive topographical differential evolution algorithm for potential energy minimization

1. 

School of Computational and Applied Mathematics, University of the Witwatersrand, Wits-2050, Johannesburg, South Africa

Received  February 2008 Revised  July 2009 Published  November 2009

The problem of the determination of the minimum energy configuration of an arrangement of $N$ point particles under the interaction of their interatomic forces is discussed. The interatomic force is described by a classical many body potential, namely the Tersoff potential for silicon. We propose a global optimization algorithm for minimization of energy of clusters of particles using Tersoff potential. The algorithm combines the topographical differential evolution (TDE) with the modified recursive procedure of the recursive differential evolution (RDE) algorithm. It also introduces an initialization procedure for the population set. Two important features of the new algorithm are that it makes use of the \lq graph minima' for local search, and that the initial population set is generated with low function values. The global minima of clusters consisting of up to 20 particles are investigated. The new algorithm is compared with a recent genetic algorithm.
Citation: M. Montaz Ali. A recursive topographical differential evolution algorithm for potential energy minimization. Journal of Industrial & Management Optimization, 2010, 6 (1) : 29-46. doi: 10.3934/jimo.2010.6.29
[1]

Bun Theang Ong, Masao Fukushima. Global optimization via differential evolution with automatic termination. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 57-67. doi: 10.3934/naco.2012.2.57

[2]

Xuwen Chen, Yan Guo. On the weak coupling limit of quantum many-body dynamics and the quantum Boltzmann equation. Kinetic & Related Models, 2015, 8 (3) : 443-465. doi: 10.3934/krm.2015.8.443

[3]

Jianjun Yuan. Derivation of the Quintic NLS from many-body quantum dynamics in $T^2$. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1941-1960. doi: 10.3934/cpaa.2015.14.1941

[4]

Shaolin Ji, Xiaomin Shi. Recursive utility optimization with concave coefficients. Mathematical Control & Related Fields, 2018, 8 (3&4) : 753-775. doi: 10.3934/mcrf.2018033

[5]

Ahmad Ahmad Ali, Klaus Deckelnick, Michael Hinze. Error analysis for global minima of semilinear optimal control problems. Mathematical Control & Related Fields, 2018, 8 (1) : 195-215. doi: 10.3934/mcrf.2018009

[6]

Qingmeng Wei, Zhiyong Yu. Time-inconsistent recursive zero-sum stochastic differential games. Mathematical Control & Related Fields, 2018, 8 (3&4) : 1051-1079. doi: 10.3934/mcrf.2018045

[7]

Ziheng Zhang, Rong Yuan. Infinitely many homoclinic solutions for damped vibration problems with subquadratic potentials. Communications on Pure & Applied Analysis, 2014, 13 (2) : 623-634. doi: 10.3934/cpaa.2014.13.623

[8]

Nicolas Fournier. A recursive algorithm and a series expansion related to the homogeneous Boltzmann equation for hard potentials with angular cutoff. Kinetic & Related Models, 2019, 12 (3) : 483-505. doi: 10.3934/krm.2019020

[9]

Tran Ninh Hoa, Ta Duy Phuong, Nguyen Dong Yen. Linear fractional vector optimization problems with many components in the solution sets. Journal of Industrial & Management Optimization, 2005, 1 (4) : 477-486. doi: 10.3934/jimo.2005.1.477

[10]

Rui Mu, Zhen Wu. Nash equilibrium points of recursive nonzero-sum stochastic differential games with unbounded coefficients and related multiple\\ dimensional BSDEs. Mathematical Control & Related Fields, 2017, 7 (2) : 289-304. doi: 10.3934/mcrf.2017010

[11]

Johannes Giannoulis, Alexander Mielke. Dispersive evolution of pulses in oscillator chains with general interaction potentials. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 493-523. doi: 10.3934/dcdsb.2006.6.493

[12]

Weiwei Ao, Juncheng Wei, Wen Yang. Infinitely many positive solutions of fractional nonlinear Schrödinger equations with non-symmetric potentials. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5561-5601. doi: 10.3934/dcds.2017242

[13]

Weiwei Ao, Liping Wang, Wei Yao. Infinitely many solutions for nonlinear Schrödinger system with non-symmetric potentials. Communications on Pure & Applied Analysis, 2016, 15 (3) : 965-989. doi: 10.3934/cpaa.2016.15.965

[14]

Veronica Felli, Alberto Ferrero, Susanna Terracini. On the behavior at collisions of solutions to Schrödinger equations with many-particle and cylindrical potentials. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 3895-3956. doi: 10.3934/dcds.2012.32.3895

[15]

Julian Braun, Bernd Schmidt. On the passage from atomistic systems to nonlinear elasticity theory for general multi-body potentials with p-growth. Networks & Heterogeneous Media, 2013, 8 (4) : 879-912. doi: 10.3934/nhm.2013.8.879

[16]

Michael Herrmann, Alice Mikikits-Leitner. KdV waves in atomic chains with nonlocal interactions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2047-2067. doi: 10.3934/dcds.2016.36.2047

[17]

Jean-Baptiste Caillau, Bilel Daoud, Joseph Gergaud. Discrete and differential homotopy in circular restricted three-body control. Conference Publications, 2011, 2011 (Special) : 229-239. doi: 10.3934/proc.2011.2011.229

[18]

Elimhan N. Mahmudov. Optimal control of evolution differential inclusions with polynomial linear differential operators. Evolution Equations & Control Theory, 2019, 8 (3) : 603-619. doi: 10.3934/eect.2019028

[19]

Giovanni F. Gronchi, Chiara Tardioli. The evolution of the orbit distance in the double averaged restricted 3-body problem with crossing singularities. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1323-1344. doi: 10.3934/dcdsb.2013.18.1323

[20]

Shouwen Fang, Peng Zhu. Differential Harnack estimates for backward heat equations with potentials under geometric flows. Communications on Pure & Applied Analysis, 2015, 14 (3) : 793-809. doi: 10.3934/cpaa.2015.14.793

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]