January  2010, 6(1): 29-46. doi: 10.3934/jimo.2010.6.29

A recursive topographical differential evolution algorithm for potential energy minimization

1. 

School of Computational and Applied Mathematics, University of the Witwatersrand, Wits-2050, Johannesburg, South Africa

Received  February 2008 Revised  July 2009 Published  November 2009

The problem of the determination of the minimum energy configuration of an arrangement of $N$ point particles under the interaction of their interatomic forces is discussed. The interatomic force is described by a classical many body potential, namely the Tersoff potential for silicon. We propose a global optimization algorithm for minimization of energy of clusters of particles using Tersoff potential. The algorithm combines the topographical differential evolution (TDE) with the modified recursive procedure of the recursive differential evolution (RDE) algorithm. It also introduces an initialization procedure for the population set. Two important features of the new algorithm are that it makes use of the \lq graph minima' for local search, and that the initial population set is generated with low function values. The global minima of clusters consisting of up to 20 particles are investigated. The new algorithm is compared with a recent genetic algorithm.
Citation: M. Montaz Ali. A recursive topographical differential evolution algorithm for potential energy minimization. Journal of Industrial and Management Optimization, 2010, 6 (1) : 29-46. doi: 10.3934/jimo.2010.6.29
[1]

Xuwen Chen, Yan Guo. On the weak coupling limit of quantum many-body dynamics and the quantum Boltzmann equation. Kinetic and Related Models, 2015, 8 (3) : 443-465. doi: 10.3934/krm.2015.8.443

[2]

Jianjun Yuan. Derivation of the Quintic NLS from many-body quantum dynamics in $T^2$. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1941-1960. doi: 10.3934/cpaa.2015.14.1941

[3]

Bun Theang Ong, Masao Fukushima. Global optimization via differential evolution with automatic termination. Numerical Algebra, Control and Optimization, 2012, 2 (1) : 57-67. doi: 10.3934/naco.2012.2.57

[4]

Mingshang Hu. Stochastic global maximum principle for optimization with recursive utilities. Probability, Uncertainty and Quantitative Risk, 2017, 2 (0) : 1-. doi: 10.1186/s41546-017-0014-7

[5]

Shaolin Ji, Xiaomin Shi. Recursive utility optimization with concave coefficients. Mathematical Control and Related Fields, 2018, 8 (3&4) : 753-775. doi: 10.3934/mcrf.2018033

[6]

Ahmad Ahmad Ali, Klaus Deckelnick, Michael Hinze. Error analysis for global minima of semilinear optimal control problems. Mathematical Control and Related Fields, 2018, 8 (1) : 195-215. doi: 10.3934/mcrf.2018009

[7]

Qingmeng Wei, Zhiyong Yu. Time-inconsistent recursive zero-sum stochastic differential games. Mathematical Control and Related Fields, 2018, 8 (3&4) : 1051-1079. doi: 10.3934/mcrf.2018045

[8]

Ziheng Zhang, Rong Yuan. Infinitely many homoclinic solutions for damped vibration problems with subquadratic potentials. Communications on Pure and Applied Analysis, 2014, 13 (2) : 623-634. doi: 10.3934/cpaa.2014.13.623

[9]

Nicolas Fournier. A recursive algorithm and a series expansion related to the homogeneous Boltzmann equation for hard potentials with angular cutoff. Kinetic and Related Models, 2019, 12 (3) : 483-505. doi: 10.3934/krm.2019020

[10]

Yunping Jiang. Global graph of metric entropy on expanding Blaschke products. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1469-1482. doi: 10.3934/dcds.2020325

[11]

Tran Ninh Hoa, Ta Duy Phuong, Nguyen Dong Yen. Linear fractional vector optimization problems with many components in the solution sets. Journal of Industrial and Management Optimization, 2005, 1 (4) : 477-486. doi: 10.3934/jimo.2005.1.477

[12]

Rui Mu, Zhen Wu. Nash equilibrium points of recursive nonzero-sum stochastic differential games with unbounded coefficients and related multiple\\ dimensional BSDEs. Mathematical Control and Related Fields, 2017, 7 (2) : 289-304. doi: 10.3934/mcrf.2017010

[13]

Weiwei Ao, Juncheng Wei, Wen Yang. Infinitely many positive solutions of fractional nonlinear Schrödinger equations with non-symmetric potentials. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5561-5601. doi: 10.3934/dcds.2017242

[14]

Weiwei Ao, Liping Wang, Wei Yao. Infinitely many solutions for nonlinear Schrödinger system with non-symmetric potentials. Communications on Pure and Applied Analysis, 2016, 15 (3) : 965-989. doi: 10.3934/cpaa.2016.15.965

[15]

Veronica Felli, Alberto Ferrero, Susanna Terracini. On the behavior at collisions of solutions to Schrödinger equations with many-particle and cylindrical potentials. Discrete and Continuous Dynamical Systems, 2012, 32 (11) : 3895-3956. doi: 10.3934/dcds.2012.32.3895

[16]

Fangyi Qin, Jun Wang, Jing Yang. Infinitely many positive solutions for Schrödinger-poisson systems with nonsymmetry potentials. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4705-4736. doi: 10.3934/dcds.2021054

[17]

Johannes Giannoulis, Alexander Mielke. Dispersive evolution of pulses in oscillator chains with general interaction potentials. Discrete and Continuous Dynamical Systems - B, 2006, 6 (3) : 493-523. doi: 10.3934/dcdsb.2006.6.493

[18]

Michael Herrmann, Alice Mikikits-Leitner. KdV waves in atomic chains with nonlocal interactions. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 2047-2067. doi: 10.3934/dcds.2016.36.2047

[19]

Julian Braun, Bernd Schmidt. On the passage from atomistic systems to nonlinear elasticity theory for general multi-body potentials with p-growth. Networks and Heterogeneous Media, 2013, 8 (4) : 879-912. doi: 10.3934/nhm.2013.8.879

[20]

He Huang, Zhen He. A global optimization method for multiple response optimization problems. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022016

2021 Impact Factor: 1.411

Metrics

  • PDF downloads (88)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]