• Previous Article
    Influence of real-time queue capacity on system contents in DiffServ's expedited forwarding per-hop-behavior
  • JIMO Home
  • This Issue
  • Next Article
    Analysis of multiclass feedback queues and its application to a packet scheduling problem
July  2010, 6(3): 569-585. doi: 10.3934/jimo.2010.6.569

Exact performance analysis of a single-wavelength optical buffer with correlated inter-arrival times

1. 

SMACS Research Group, Ghent University, St.-Pietersnieuwstraat 41, 9000 Gent, Belgium

2. 

SMACS Research Group, Department TELIN (IR07), Ghent University, St.-Pietersnieuwstraat 41, 9000 Gent, Belgium, Belgium, Belgium

Received  September 2009 Revised  April 2010 Published  June 2010

Providing a photonic alternative to the current electronic switching in the backbone, optical packet switching (OPS) and optical burst switching (OBS) require optical buffering. Optical buffering exploits delays in long optical fibers; an optical buffer is implemented by routing packets through a set of fiber delay lines (FDLs). Previous studies pointed out that, in comparison with electronic buffers, optical buffering suffers from an additional performance degradation. This contribution builds on this observation by studying optical buffer performance under more general traffic assumptions. Features of the optical buffer model under consideration include a Markovian arrival process, general burst sizes and a finite set of fiber delay lines of arbitrary length. Our algorithmic approach yields instant analytic results for important performance measures such as the burst loss ratio and the mean delay.
Citation: Wouter Rogiest, Dieter Fiems, Koenraad Laevens, Herwig Bruneel. Exact performance analysis of a single-wavelength optical buffer with correlated inter-arrival times. Journal of Industrial & Management Optimization, 2010, 6 (3) : 569-585. doi: 10.3934/jimo.2010.6.569
[1]

Shuyang Dai, Fengru Wang, Jerry Zhijian Yang, Cheng Yuan. A comparative study of atomistic-based stress evaluation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020322

[2]

Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106

[3]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[4]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[5]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[6]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[7]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (32)
  • HTML views (0)
  • Cited by (0)

[Back to Top]